Open access peer-reviewed chapter - ONLINE FIRST

Therapeutic Strategies against Trypanosomiasis

Written By

Mohamed Dkhil, Saeed El-Ashram and Rewaida Abdel-Gaber

Submitted: 09 April 2023 Reviewed: 04 September 2023 Published: 30 November 2023

DOI: 10.5772/intechopen.113113

Trypanosoma - Recent Advances and New Perspectives IntechOpen
Trypanosoma - Recent Advances and New Perspectives Edited by Saeed El-Ashram

From the Edited Volume

Trypanosoma - Recent Advances and New Perspectives [Working Title]

Dr. Saeed El-Ashram, Dr. Abdulaziz Alouffi and Prof. Dkhil Mohamed

Chapter metrics overview

73 Chapter Downloads

View Full Metrics

Abstract

Trypanosoma evansi, an extracellular protozoan parasite, causes camel trypanosomiasis, also known as “surra”. The parasite, which can be found in camels, dromedaries, horses, and other Equidae family members, can cause 3% mortality and up to 30% morbidity. This chapter focuses on trypanosome-related infections, including their morphology, classification, clinical manifestations, immuno-suppressive effects, and herbal remedies and nanoparticles for their prevention and treatment. The disease is transmitted through biting of an infected insect, usually a tsetse fly. It causes fever, anemia, lymphadenopathy, and splenomegaly, with parasite suppressing the host’s immune system, making them more susceptible to other infections. Current therapies for trypanosomiasis face challenges such as drug resistance, toxicity, and limited availability of expensive drugs. Therefore, it is necessary to look for trypanosomiasis chemotherapeutic drugs that are cheaper, more effective, readily available, and lethal. Nanomedicine approaches have been explored for treating parasitic diseases, as they efficiently transport drug molecules and enhance the biological effects of sustained drug release from nanocarriers, nanoemulsions, and quantum dots. Nanomaterials have shown promising functions in detecting and treating protozoan diseases like trypanosomiasis. Many studies have been published on nanoparticles with different physical and chemical properties that have demonstrated promising functions in increasing the effectiveness of trypanosome drugs.

Keywords

  • surra
  • Trypanosoma evansi
  • distribution
  • transmission modes
  • nanoparticles
  • immune response

1. Introduction

Trypanosoma evansi is an extracellular protozoan parasite of salivarian trypanosomes in the genus Trypanosoma, considered the causative agent of camel trypanosomiasis “surra” [1]. Griffith Evans first identified this disease in 1880, and its term refers to the chronic evolution of the disease in animals as being “rotten” [2]. The spleen, liver, heart, lung, brain, and kidney are just a few key human organs that experience degenerative changes because of T. evansi infection. T. evansi’s primary host is still the camel, but it is also found in various other hosts, including dromedaries, horses, and other Equidae [3]. Camel productivity is crucial in dry regions because camels provide transportation, drought power, meat, and milk [4]. Camel trypanosomiasis can cause mortality of about 3% and morbidity of up to 30% [5]. It is believed that T. evansi is a descendant of T. brucei brucei, cyclically transmitted by tsetse flies. Still, it cannot go through its cycle in Glossina because a portion of the mitochondrial DNA (the maxicircles of the kinetoplast), responsible for its capacity to perform oxidative phosphorylation, has been lost [6]. This chapter discussed the morphology, classification, clinical manifestations, immunosuppressive effects of trypanosomes, and infection control via medicinal plants and nanoparticles.

Advertisement

2. Trypanosome basic morphology

Trypanosomes can exist and move within the host’s blood plasma or tissue fluid. The cytoplasm’s outermost layer, the pellicle, is flexible enough to allow the body to move while still keeping its shape [1]. A flagellum arises near the posterior end of the basal body and runs the length of the trypanosome; it may be continued as a whip-like free flagellum beyond the anterior end of the body. Along the length of the body, the pellicle and cytoplasm are compressed into a thin sheet of tissue known as the undulating membrane, through which the flagellum passes (Figure 1). Figure 2 depicts trypanosome pleiomorphism (variation in body form) at various lifecycle stages.

  1. Trypomastigote (posterior kinetoplast: undulating membrane along the entire length of the organism)

  2. Epimastigote (anterior kinetoplast: undulating membrane running over part of the body)

  3. Promastigote (anterior kinetoplast: no undulating membrane)

  4. Amastigote (anterior kinetoplast: usually spheroid or sub spheroid, no free flagellum)

Figure 1.

Trypanosome general morphology.

Figure 2.

Trypanosome developmental stages.

Advertisement

3. Trypanosoma evansi taxonomy

Trypanosoma evansi, a salivarian trypanosome with unicellular flagellated kinetoplastid protozoa, is the causative agent of trypanosomiasis [1]. It is monomorphic morphologically, as evidenced by the trypomastigote stage, which has predominantly long, slender forms (Figure 1).

Phylum: Euglenozoa

Class: Kinetoplastea

Order: Trypanosomatida

Family: Trypansomatidae

Genus: Trypanosoma

Binomial name Trypanosoma evansi (Steel) Chauvrat, 1896

Advertisement

4. Life cycle and transmission

The Trypanosoma species reproduce by longitudinal binary fission, in which the flagellum and kinetoplast divide simultaneously in the host and the vector [7]. The main method of mechanical transmission in camels is through insects that bite them, so there is no need for a biological vector for T. evansi. The most significant vectors are believed to be those of the horsefly and deerfly families, Tabanidae (including the genera Atylotus, Tabanus, Lyperosia, Chrysops, and Haematopota), and Stomoxys flies [3]. The T. evansi life cycle began with flies feeding through their mouthparts on multiple hosts within a short time because the Trypanosoma is only infectious for a short time (Figure 3). It then multiplies in the midgut for 10 days, migrates to the salivary glands in the epimastigote form, and multiplies again in the salivary glands to change into the metacyclic form (infectious stage), which is then injected by a fly during a bite to become trypomastigote in the blood and lymph of the host [8]. Trypanosomes cannot survive for extended periods outside of their host and leave the body after death. After 8 h, flies can no longer spread the parasites.

Figure 3.

Trypanosome life cycle.

4.1 Clinical manifestations

A species-specific pathology is caused by T. evansi infection in various hosts [9]. Surra can affect camels at any age, including fetuses, and can cause an abortion by manifesting in both acute and chronic forms with the clinical sign severity varying between different animal species (Figure 4). The acute form of the disease in camels may last up to three months and is characterized by irregular fever, decreased appetite, and water intake. As the condition worsens, the hump disappears, there is dependent edema under the belly, there is marked depression, the coat becomes dull and rough, there is hair loss at the tail, and there is frequently rapid death [10]. The mucosal membranes of the eyes are paler, the body temperature fluctuates with early peaks of up to 41°C, and the urine usually has a distinct flavor. High body fever accompanies parasitemia [11].

Figure 4.

Trypanosoma evansi in the blood of camels (from our collections).

The majority of patients experience repeated fever episodes and are persistent. Some camels experience petechial hemorrhages in mucous membranes, dermatitis lesions, and swelling in their dependent body parts. Death is unavoidable if neglected; however, some may retain trypanosomes for two to three years as carriers for infection in vulnerable camels and other animals. Additional well-documented field reports include camel fatalities, abortions, and neurotic symptoms such as circling and trembling, odd aggression, aimless running, and collapse in severely stressed and overworked camels [10]. The higher parasite numbers in the host’s circulation affect neurotransmitter levels, and dopamine and serotonin levels were found to be greater in the brains of rodents inoculated with T. evansi [12].

4.2 Diagnosis

Diagnosing a T. evansi infection from the general clinical symptoms is difficult, and the parasite must be detected using laboratory techniques. In moderate or subclinical cases, the organism may be challenging to locate, and in animals. With chronic infection, parasitemia is frequently intermittent. In early infection or severe cases with elevated parasitemia, dyed blood slides, wet blood films, or lymph node samples may be studied to determine the trypanosomes. When parasitemia is low or in chronic cases, thick blood smear analysis, parasite concentration techniques, and laboratory rodent immunization are required. Trypanosome DNA detection methods can be employed on hosts and vectors. The most sensitive primers for surra are trypanosome-specific ones that target satellite DNA or ribosomal DNA [13]. Amplifications of the ITS1 of ribosomal DNA may identify all African Trypanosoma spp. in single or mixed infections based on the specific size of the PCR products [14]. False-negative results may occur when parasitemia is extremely low and not all isolates of a certain Trypanosoma species are detected; in these circumstances, a serological investigation may only substantiate suspicion of prospective carriers. For instance, PCRs specific for the type A RoTat 1.2 gene and specific for type B minicircles may differentiate T. evansi types A and B [15]. Real-time PCR (RT-PCR) approaches have been established for T. evansi [16], T. congolense [17], and T. brucei [18]. They were very sensitive and specific when applied to hosts and vectors, but their usage has been extremely restricted until now, most likely because of the high level of technical skill, necessary equipment, and associated costs. The effectiveness of these methods for standard diagnostic procedures has yet to be established. Beside parasitological or molecular diagnosis, serological testing may provide indirect evidence of T. evansi in a susceptible population or individual. In the most reliable testing for T. evansi type A antibodies, the variant surface glycoprotein (VSG) RoTat 1.2 is utilized as an antigen [19]. These tests include the immune trypanolysis [20], the complement fixation test (CFT) [21], the indirect fluorescent antibody test (IFAT) [22], the direct agglutination test CATT/T. evansi [23], and the ELISA/VSG RoTat 1.2 [24]. Only the latter test, which involves exposing the subject to live T. evansi RoTat 1.2, is used to detect antibodies since the OIE recommends it [25]. IFAT and CFT detect immunoglobulin G (IgG), whose levels remain relatively consistent during the infection, to aid in diagnosing trypanosomiasis.

4.3 Distribution

A very wide range of hosts with the broadest geographical distribution has documented naturally occurring T. evansi infections (Table 1). The distribution from 1893 to 2022 was reported following earlier studies [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282].

Host typeCountryReference
Domestic animals
BuffaloEgypt, China, India, Indonesia, Philippines, Vietnam, Malaysia, Pakistan, Thailand, Brazil[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]
CamelAlgeria, Chad, Egypt, Ethiopia, Kenya, Mali, Mauritania, Morocco, Nigeria, Somalia, Somaliland, Sudan, India, Iran, Jordan, Kuwait, Saudi Arabia, Palestine, Mule, United Arab, Emirates, France, Pakistan, Spain, Oman[1, 4, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137]
CattleEgypt, Ethiopia, Nigeria, India, Indonesia, Iraq, Philippines, Bolivia, Malaysia, Thailand, Brazil, Colombia, Peru, Venezuela, Spain, Syria[1, 26, 29, 30, 36, 38, 41, 44, 48, 50, 55, 120, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177]
DeerMauritius, Malaysia, Thailand[178, 179, 180, 181, 182]
DogTunisia, Afghanistan, India, Sri Lanka, Germany, Netherlands, Malaysia, Pakistan, Thailand, Argentina, Brazil, Colombia, Paraguay[174, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216]
DonkeyEthiopia, India, Venezuela, Spain, Palestine[100, 120, 135, 217, 218, 219]
EquinesIndia, Pakistan, Spain, Saudi Arabia[26, 48, 107, 165, 220, 221, 222]
GoatEgypt, Ethiopia, Sudan, India, Spain, Palestine[59, 113, 120, 135, 223]
HorseAlgeria, Ethiopia, Nigeria, India, Indonesia, Israel, Jordan, Malaysia, Pakistan, Thailand, Argentina, Brazil, Venezuela, Spain, Regency, Palestine[29, 38, 44, 100, 120, 135, 138, 143, 191, 202, 217, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248]
MuleEthiopia, India, Thailand, Palestine[120, 135, 218, 227, 244]
PigIndia, Thailand, Brazil[228, 249, 250, 251]
PonyIndia[252]
SheepEgypt, Ethiopia, Sudan, India, Spain, Palestine, Iran[59, 113, 120, 135, 253, 254, 255]
Wild animals
ArmadilloBrazil[38]
BatsBrazil, Colombia, Venezuela[38, 228, 255, 256]
BearPakistan[257, 258]
CapybaraArgentina, Brazil, Colombia, Peru, Venezuela[38, 143, 188, 217, 259, 260, 261, 262, 263, 264]
CoatisBrazil[38, 202, 265, 266, 267]
Crab-eating foxBrazil[193]
Crab-eating raccoonBrazil[265]
DeerBrazil[268, 269]
ElephantIndia, Thailand[270, 271]
JaguarIndia[272]
MarsupialsBrazil[38, 228, 273]
OcelotBrazil[193]
PeccariesBrazil[228, 251]
RodentsCambodia, Laos, Thailand, Brazil, Egypt[38, 228, 273, 274, 275, 276, 277, 278, 279, 280]
RhinocerosMalaysia[281]
TigerIndia[272, 282]

Table 1.

Worldwide distribution of T. evansi among host species.

4.4 Trypanosome and vector control

Pathogen control and vector control are the two traditional components of managing a vector-borne disease. There are some additional alternative methods for preventing transmission that can be used in combination to prevent infection [5]. With surra, disease prevention primarily focuses on using trypanocide and preventive management techniques to protect animals from infection because trypanosomes lack a vaccine against them (because of a broad repertoire of variable surface antigens) [128].

4.5 Trypanosome control

T. evansi can be eliminated by injecting various trypanocidal drugs, including diminazene aceturate (Berenil), suramin, quinapyramine melarsomine, and (cymelarsan) [51]. Nevertheless, extravascular invasion or chemoresistance may cause the treatment to fail. Trypanocides can be separated into the following two groups:

  1. Therapeutic drugs are utilized therapeutically and have a short-term effect. You cannot always eliminate parasites, but you can kill them. For example, melarsomine dihydrochloride was the newest trypanicide commercially available in 1992. A deep intramuscular injection at 0.25 mg/kg is used to control camel trypanosomosis, and this dose can be increased to 0.5 mg/kg if full therapeutic (sterile) therapy is required.

  2. Therapeutic and prophylactic drugs are used for chemoprevention. Chemoprophylaxis helps animals eliminate parasites and prevent new infections by maintaining a curative dose in their serum. Quinapyramine methyl-sulfate at 5 mg/kg could be given subcutaneously. A stronger mixture of quinapyramine sulfate and chloride can treat/prevent T. evansi in camels when injected subcutaneously at 8 mg/kg.

4.6 Vector control

Some animals in endemic locations may be protected against T. evansi-carrying biting files by traps, insecticides/repellents, insect screens/netting in stables, and other interventions [51, 128]. In the first 30 min after feeding on an infected host, flies are most infectious and likely to spread to surrounding hosts. Tabanids are persistent feeders and seldom attack animals beyond 50 m away.

4.7 Immunosuppressive effects of trypanosomes

The host’s immune system, including innate and adaptive immunological defenses, constantly confronts trypanosomes [283]. Therefore, selective pressure has allowed them to develop sophisticated escape mechanisms. T. evansi could evade the host immune response by inhibiting the inflammatory cytokine production using T. evansi extracellular vesicles (TeEVs) to activate the TLR2-AKT pathway. KMP-11 in TeEVs was shown to be involved in the T. evansi infection. TLR2-AKT signaling is activated by extracellular vesicles (EVs) released by T. evansi to decrease the production of inflammatory cytokines, allowing the parasite to evade the host’s immunological response [284].

Antigenic variation, wherein trypanosomes repeatedly exhibit distinct surface glycoproteins (VSG), is the most prominent escape mechanism. The trypanosomes force their host to produce successive directories of antibodies to deal with emerging VSG variants, even though a new variant is intended to appear before the humoral response is effective. This is regarded as the first intentional immunosuppression, but it results from immunological exhaustion [285]. The complement system is one of the first molecular defenses in innate immunity, and antibody-dependent complement-mediated lysis is likely one of the most efficient early control methods established by the host. Despite a slight initial increase, experimental camel infections showed that classical complement pathway hemolytic activity decreased as the infection progressed and negatively correlated with parasitemia but recovered after trypanosomes were eliminated, strongly indicating immunosuppression of the molecular immune system components [286]. Macrophages play a crucial role in the innate cell-mediated immune response to trypanosomes, both as antigen-presenting cells (APCs) and as microbicidal effector cells. Infection susceptibility or resistance may be further influenced by trypanosomes, which polarize macrophages into distinct activation states (M1, M2) through parasite factors and host cytokines [287, 288]. Trypanosomes are believed to be killed by the induction of classically activated macrophages (M1-type macrophages), which produce significant amounts of inflammatory compounds such as tumor necrosis factor-alpha (TNF-α), reactive oxygen intermediates, nitric oxide synthase two-dependent reactive nitrogen intermediates such as NO, and associated molecules [288]. Dendritic cells (DCs), which are APCs, are known for being potent immune system elicitors and regulators. Splenocytes exhibit elevated levels of Ccl8 and IL-10 expression revealing a rise in regulatory DC activity and number as the underlying factor in T. evansi infections that causes the inflammatory cytokine and chemokine storm, which was mostly caused by macrophages. The inflammatory responses may be used to immunosuppress the host, but management may be necessary to prevent irreversible pathophysiological effects. As the infection progressed, the regulatory DCs became more prevalent, decreasing inflammatory DCs [289]. Trypanosome infections result in polyclonal B cell activation, primarily an IgM response with little IgG synthesis [290]. T. evansi, unlike T. brucei and T. congolense, has distinct molecular and cellular dialogues and conflicts when interacting with a mammalian host. Despite infection-associated induction of trypanocidal inflammatory molecules, only IgM antibodies have been shown to significantly contribute to trypanosome control [288]. Recent research has shown that T. evansi lymphotoxin can cause CD45-dependent lymphocyte mortality [291], consistent with the pioneering observation that T. evansi membrane fractions induce suppressor cells [292].

4.8 T. evansi infection may cause serious diseases including cancer

T. evansi can evade the host immune response by some mechanisms, including the production of immunosuppressive factors. T. evansi has been shown to down-regulate the expression of some key immune response genes, including interleukin-12 (IL-12). IL-12 is a critical cytokine for the development of Th1 responses, and its down-regulation by T. evansi results in the suppression of cell-mediated immunity [293]. This suppression of the immune response makes the host more susceptible to a variety of pathogens, including cancer-causing viruses [294]. T. evansi infection has also been linked to the development of autoimmunity. T. evansi can induce the production of autoantibodies by some mechanisms, including the cross-reactivity of its surface antigens with host proteins. This cross-reactivity results in the formation of immune complexes, which can trigger the development of autoimmune disease. T. evansi has also been shown to induce the production of proinflammatory cytokines, which can lead to the development of chronic inflammation. Chronic inflammation is a risk factor for the development of some diseases, including cancer [295, 296].

4.9 Medicinal plants against T. evansi

Drug resistance, toxicity, and the availability of expensive/limited drugs pose challenges to the current trypanosomiasis treatments [297]. Consequently, it is necessary to search for trypanosomiasis chemotherapeutic drugs that are less expensive, more potent, accessible, and lethal. Given that some ethnomedicinal plants have been shown to have effective trypanocides, and the use of herbal treatment for the disease still has a promising future [298, 299, 300, 301, 302, 303, 304]. Plants’ active metabolites are often in various plant parts, including the roots, leaves, shoots, and bark. According to Ngure et al. [305], 20,000 species of higher plants are used medicinally worldwide, with some of them being used to treat trypanosomes (Table 2). We used PubMed search to find the most important medicinal plants used in the treatment of trypanosomiasis [306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348].

FamilySpeciesPlant taxon IDPlant partReference
AcanthaceaePeristrophe bicalyculataNCBI:txid1378003Whole plant[306]
AmaryllidaceaeAllium sativumNCBI:txid4682Whole plant[307]
Mangifera indicaNCBI:txid29780Root[308]
AnacardiaceaeSpondias mombimNCBI:txid1790097Root[309]
Lannea welwistchiiNCBI:txid289718Leaves[310]
AnnonaceaeMonodora myristicaNCBI:txid296852Seeds[309]
Carissa spinarumNCBI:txid429256Root[311]
Adenium obesumNCBI:txid69375Root[308]
AraceaeAnchomanes difformisNCBI:txid28473Root[302]
AsclepiadaceaeGongronema latifoliumNCBI:txid2020314Leaves, stem bark[312]
AsteraceaeTridax procumbensNCBI:txid318066Whole plant[313]
Achyrocline satureioidesNCBI:txid746493Whole plant[314]
CapparaceaeCrateva adansoniiNCBI:txid190806Leaves[315]
Buchholzia coriaceaNCBI:txid202671Seeds[316]
ClusiaceaeGarcinia kolaNCBI:txid469930Seeds[317]
CombretaceaeTerminalia superbaNCBI:txid798610Bark[310]
EbenaceaeDiospyros mespiliformisNCBI:txid413760Leaves[308]
EuphorbiaceaeAlchornea cordifoliaNCBI:txid316697Stem bark[309]
FabaceaeAcacia niloticaNCBI:txid138033Stem bark[318, 319]
Afzelia AfricanaNCBI:txid162641Whole plant[320]
Piliostigma reticulatumNCBI:txid228531Leaves[321]
Prosopis AfricanaNCBI:txid433926Stem bark[322, 323]
Senna occidentalisNCBI:txid126820Leaves[324]
Indigofera oblongifoliaNCBI:txid198899Leaves[325, 326]
FagaceaeQuercus borealisNCBI:txid3512Leaves[327]
HymenocardiaceaeHymenocardia acidaNCBI:txid300975Root, stem bark[328]
LamiaceaeOcimum gratissimumNCBI:txid204144Leaves[329]
Hyptis spicigeraNCBI:txid2910975Leaves[330]
Mentha longifoliaNCBI:txid38859Leaves[331]
LauraceaeCassytha filiformisNCBI:txid121073Leaves, stem[302]
LoganiaceaeAnthocleista vogeliiNCBI:txid84938Root, stem bark[332]
Strychnos spinosaNCBI:txid99302Leaves[333]
LythraceaeLawsonia inermisNCBI:txid141191Leaves[308]
Punica granatumNCBI:txid22663Leaves[334]
MalvaceaeBombax buonopozenseNCBI:txid66654Stem bark[336]
MelastomataceaeDissotis rotundifoliaNCBI:txid40000Leaves[336]
MeliaceaeKhaya senegalensisNCBI:txid587579Leaves, axial stem[322, 337, 338]
Azadirachta indicaNCBI:txid124943Leaves[305]
MoraceaeFicus sycomorusNCBI:txid182129Stem bark[308]
MoringaceaeMoringa oleiferaNCBI:txid3735Leaves, stem, stem bark, root[339]
MyrtaceaePsidium guajavaNCBI:txid120290Leaves[340]
Syzygium guineenseNCBI:txid334482Stem bark[341]
Eucalyptus camaldulensisNCBI:txid34316Leaves[280, 342, 343]
OchnaceaeLophira lanceolataNCBI:txid670087Leaves, stem bark[332]
Ximenia americanaNCBI:txid50174Stem bark[344]
PlantaginaceaePicrorhiza kurroaNCBI:txid195120Whole plant[345]
PoaceaeCanarium schweinfurthiiNCBI:txid533031Stem bark[308]
PolygalaceaeSecuridaca longepedunculataNCBI:txid690845Root[341]
RubiaceaeGardenia erubescensNCBI:txid1623618Leaves[346]
Morinda lucidaNCBI:txid339305Leaves[298]
RutaceaeZanthoxylum zanthoxyloidesNCBI:txid2099548Stem bark[318, 347]
SolanaceaeWithania somniferaNCBI:txid126910Whole plant[309]
UlmaceaeTrema orientalisNCBI:txid63057Leaves[347]
VerbenaceaceVitex donianaNCBI:txid479623Leaves[347]
ZingiberaceaeZingiber officinaleNCBI:txid94328Root[348]

Table 2.

Identified medicinal plants with activity against trypanosomes.

4.10 Green nanotechnology against T. evansi

The nanomedicine approach has been studied for treating parasitic diseases because it can effectively transport drug molecules to the target location and boost the biological impact of prolonged drug release from nanocarriers, nanoemulsions, and quantum dots (QDs) [349, 350, 351]. Targeting these intracellular parasites can be accomplished by carefully examining the structural and physical characteristics of nanocarriers, which largely dictate their function. Particle size, surface charge, shape, processes, and bio-distribution patterns are all important factors in how effectively nanomaterials work [352].

Many nanomaterials (NMs) have indicated usefulness in the detection and management of protozoan diseases, such as trypanosomiasis, including polymers [353], lipids [354], and metallic/inorganic systems [355]. Metal oxides, such as iron oxide, zinc oxide, copper oxide, titanium dioxide, and magnesium oxide, are examples of metallic NMs, along with gold, silver, selenium, and platinum [356]. Because internalized nanomaterials are constrained in size to less than 130 nm in the trypanosome flagellar pocket, NMs are better suited for endocytosis there [357]. Much research has been published using nanoparticles (NPs) with varying physical and chemical properties, and they have demonstrated promising functions in boosting the antitrypanosomal drug effectiveness [352, 358]. Gold (Au) and silver (Ag) nanoparticles (NPs) introduced new therapies and enhanced molecular diagnostics [359]. The two NMs are effective wound healers with excellent properties such as anticancer, antimicrobial, antidiarrheal, and antifungal activities. Against T. brucei gambience, T. evansi, T. cruzi, and T. congolense, AuNPs, and AgNPs were employed [360, 361]. These NPs inhibited growth by 50% in studies focusing on T. evansi and T. congolense, and they also showed excellent efficacy against T. brucei gambience and T. cruzi. Similarly, AuNPs and AgNPs were used to treat arginine kinase in another investigation. The enzyme arginine kinase (phosphotransferase) is required for Trypanosoma energy metabolism [362]. Piperine-loaded NCs enhance the production of ROS, which has an inhibitory effect on T. evansi’s growth according to Rani et al. [351]. Nanoemulsions, which vary in size from 10 to 600 nm and are made up of a combination of insoluble liquids in two separate phases, with vesicles in a dispersed phase bound by vesicles in a continuous phase, have shown remarkable promise as effective drug delivery agents [363]. This makes them highly effective nanocarriers for enhancing the solubility of hydrophobic medications. In a study, ursolic acid, an antitrypanosomal chemical present in nanoemulsions with a size of 57.3 nm, was found to have great stability [354]. Another study presents a nanoemulsion formulation developed using clove oil in sulfonamide that was shown to have strong antitrypanocidal action and carbonic anhydrase inhibitor activity, which inhibits the T. cruzi a-class enzyme [364]. Nanoscale crystal formations known as QDs can move electrons. These semiconducting nanoparticles can emit light of various colors when exposed to UV light, making them suitable nanomaterials for various biomedical applications, including drug administration and detection [352]. However, these NPs have negative side effects in in vitro and in vivo studies, which may harm human health [365]. When the impact of QDs of cadmium tellurium (CdTe) on epimastigotes of T. cruzi was examined [366], T. cruzi growth patterns decreased substantially after being exposed to high doses of this nanomaterial, which prompted more research in this field. When T. cruzi was incubated with 200 mM CdTeQD, significant morphological changes, DNA damage, blister formation in the plasma membrane, and mitochondrial swelling were noted.

Advertisement

5. Conclusions

Camel trypanosomiasis, often known as “surra,” is thought to be caused by T. evansi, an extracellular protozoan parasite of salivary trypanosomes. Therefore, it is important to seek out chemotherapeutic treatments for trypanosomiasis that are both affordable and efficacious. Current trypanosomiasis therapy faces obstacles, including medication resistance, toxicity, and expensive/limited drug supply. Trypanosomiasis is a protozoan disease that has been demonstrated to respond to various nanomaterials, including polymers, lipids, and metallic/inorganic systems.

Advertisement

Acknowledgments

The authors extend their appreciation to Helwan University for providing some information that helps to complete the data.

Advertisement

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1. Desquesnes M, Bossard G, Thévenon S, Patrel D, Ravel S, Pavlovic D, et al. Development and application of an antibody-ELISA to follow up a Trypanosoma evansi outbreak in a dromedary camel herd in France. Veterinary Parasitology. 2009;162:214-220. DOI: 10.1016/j.vetpar.2009.03.033
  2. 2. Vittoz R. Prophylaxie du surra en Asie. Bulletin – Office International des Epizooties. 1955;44:83-106
  3. 3. Vanhollebeke B, Truc P, Poelvoorde P, Pays A, Joshi PP, Katti R, et al. Human Trypanosoma evansi infection linked to a lack of apolipoprotein L-I. The New England Journal of Medicine. 2006;355(26):2752-2756. DOI: 10.1056/NEJMoa063265
  4. 4. Elamin EA, El Bashir MO, Saeed EM. Prevalence and infection pattern of Trypanosoma evansi in camels in mid-eastern Sudan. Tropical Animal Health and Production. 1998;30:107-114. DOI: 10.1023/a:1005047801206
  5. 5. Diall O, Desquesnes M, Faye B, Dia ML, Jacquiet P, Sazmand A, et al. Development of a control strategy towards elimination of Trypanosoma evansi infection (surra) in camels in Africa. Acta Tropica. 2022;234:106583. DOI: 10.1016/j.actatropica.2022.106583
  6. 6. Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukes J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:1999-2004. DOI: 10.1073/pnas.0711799105
  7. 7. Liu Y, Motyka SA, Englund PT. Effects of RNA interference of Trypanosoma brucei structure-specific endonuclease-I on kinetoplast DNA replication. The Journal of Biological Chemistry. 2005;280:35513-35520. DOI: 10.1074/jbc.M507296200
  8. 8. Evans JO, Simpkin SP, Aitkins DJ. Camel Keeping in Kenya. Ministry of Agriculture, Livestock Development and Marketing; 1995
  9. 9. Taylor A, Vágány V, Jackson AC, Harrison RJ, Rainoni A, Clarkson JP. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae. Molecular Plant Pathology. 2016;17(7):1032-1047. DOI: 10.1111/mpp.12346
  10. 10. Luckins AG. Epidemiology of Surra: Unanswered questions. Journal of Protozoology Research. 1998;8:106-119
  11. 11. Kohler-Rollefson I, Mundy P, Mathias E. A Field Manual of Camel Diseases. Traditional and Modern Healthcare for the Dromedary. ITDG Publication; 2001
  12. 12. Dkhil MA, Thagfan FA, Al-Shaebi EM, Maodaa SN, Abdel-Gaber R, Hafiz TA, et al. Brain oxidative status and behavioral response of mice infected with Tyrpanosoma evansi. Journal of King Saud University – Science. 2021;33:101544. DOI: 10.1016/j.jksus.2021.101544
  13. 13. Gari FR, Ashenafi H, Tola A, Goddeeris BM, Claes F. Comparative diagnosis of parasitological, serological, and molecular tests in dourine-suspected horses. Tropical Animal Health and Production. 2010;42:1649-1654. DOI: 10.1007/s11250-010-9615-1
  14. 14. Suprihati E, Suwanti LT, Yudhana A, Kusumaningrum AI. Comparison of ITS-1 and TBR-1/2 primer sensitivity for the detection of Trypanosoma evansi local isolates in experimental rats using a polymerase chain reaction. Veterinary World. 2022;15(7):1772-1778. DOI: 10.14202/vetworld.2022.1772-1778
  15. 15. Abou El-Naga T, Barghash S, Mohammed A, Ashour A, Salama MS. Evaluation of (Rotat 1. 2-PCR) assays for identifying Egyptian Trypanosoma evansi DNA. Acta Parasitologica Globalis. 2012;3(1):1-6. DOI: 10.5829/idosi.apg.2012.3.1.6681
  16. 16. Sharma P, Juyal PD, Singla LD, Chachra D, Pawar H. Comparative evaluation of real time PCR assay with conventional parasitological techniques for diagnosis of Trypanosoma evansi in cattle and buffaloes. Veterinary Parasitology. 2012;190(3-4):375-382. DOI: 10.1016/j.vetpar.2012.07.005
  17. 17. Ahmed HA, MacLeod ET, Welburn SC, Picozzi K. Development of Real Time PCR to Study Experimental Mixed Infections of T. congolense Savannah and T. b. brucei in Glossina morsitans morsitans. PLoS ONE. 2015;10(3):e0117147. DOI: 10.1371/journal.pone.0117147
  18. 18. Becker S, Franco JR, Simarro PP, Stich A, Abel PM, Steverding D. Real-time PCR for detecting Trypanosoma brucei in human blood samples. Diagnostic Microbiology and Infectious Disease. 2004;50:193-199. DOI: 10.1016/j.diagmicrobio.2004.07.001
  19. 19. Urakawa T, Verloo D, Moens L, Büscher P, Majiwa PA. Trypanosoma evansi: Cloning and expression in Spodoptera frugiperda [correction of fugiperda] insect cells of the diagnostic antigen RoTat1.2. Experimental Parasitology. 2001;99:181-189. DOI: 10.1006/expr.2001.4670
  20. 20. Verloo D, Magnus E, Büscher P. General expression of RoTat 1.2 variable antigen type in Trypanosoma evansi isolates from different origin. Veterinary Parasitology. 2001;97:183-189. DOI: 10.1016/s0304-4017(01)00412-5
  21. 21. Hébert L, Guitton E, Madeline A, Geraud T, Carnicer D, Lakhdar L, et al. Validation of a new experimental model for assessing drug efficacy against infection with Trypanosoma equiperdum in horses. Veterinary Parasitology. 2018;263:27-33. DOI: 10.1016/j.vetpar.2018.10.005
  22. 22. Luckins AG, Mehlitz D. Evaluation of an indirect fluorescent antibody test, enzyme-linked immunosorbent assay and quantification of immunoglobins in the diagnosis of bovine trypanosomiasis. Tropical Animal Health and Production. 1978;10:149-159. DOI: 10.1007/BF02235328
  23. 23. Magnus E, Lejon V, Bayon D, Buyse D, Simarro P, Verloo D, et al. Evaluation of an EDTA version of CATT/T. brucei gambiense for serological screening of human blood samples. Acta Tropica. 2002;81:7-12. DOI: 10.1016/s0001-706x(01)00184-x
  24. 24. Roge S, Van Reet N, Odiwuor S, Tran T, Schildermans K, Vandamme S, et al. Recombinant expression of trypanosome surface glycoproteins in Pichia pastoris for the diagnosis of Trypanosoma evansi infection. Veterinary Parasitology. 2013;197(3-4):571-579. DOI: 10.1016/j.vetpar.2013.05.009
  25. 25. Verloo D, Holland W, My LN, Thanh NG, Tam PT, Goddeeris B, et al. Comparison of serological tests for Trypanosoma evansi natural infections in water buffaloes from north Vietnam. Veterinary Parasitology. 2000;92:87-96. DOI: 10.1016/s0304-4017(00)00284-3
  26. 26. Kulkarni HV. Equine and bovine surra; its incidence in Baroda State during the year 1944 and 1945. The Indian Veterinary Journal. 1946;23:233-238
  27. 27. Lohr KF, Pholpark S, Siriwan P, Leesirikul N, Srikitjakarn L, Staak C. Trypanosoma evansi infection in buffaloes in north-east ThailandII. Abortions. Tropical Animal Health and Production. 1986;18:103-108. DOI: 10.1007/BF02359721
  28. 28. Lohr KF, Pohlpark S, Srikitjakarn L, Thaboran P, Bettermann G, Staak C. Trypanosoma evansi infection in buffaloes in north-east Thailand. I. Field investigations. Tropical Animal Health and Production. 1985;17:121-125. DOI: 10.1007/BF02355869
  29. 29. Payne RC, Sukanto IP, Djauhari D, Jones TW. Trypanosoma evansi infection in bovine and buffalo calves in Indonesia. Veterinary Parasitology. 1991;38:253-256. DOI: 10.1016/0304-4017(91)90135-i
  30. 30. Payne RC, Sukanto IP, Graydon R, Saroso H, Jusuf SH. An outbreak of trypanosomiasis caused by Trypanosoma evansi on the island of Madura, Indonesia. Tropical Medicine and Parasitology. 1990;41:445-446
  31. 31. Lun ZR, Min ZP, Huang D, Liang JX, Yang XF, Huang YT. Cymelarsan in the treatment of buffaloes naturally infected with Trypanosoma evansi in South China. Acta Tropica. 1991;49:233-236. DOI: 10.1016/0001-706x(91)90042-i
  32. 32. Sangwan N, Chaudhri SS, Rao AR, Sangwan AK, Gupta RP. Folacin and cyanocobalamin in relation to natural Trypanosoma evansi infection in buffaloes. Tropical Animal Health and Production. 1993;25:79-84. DOI: 10.1007/BF02236509
  33. 33. Davison HC, Thrusfield MV, Husein A, Muharsini S, Partoutomo S, Rae P, et al. The occurrence of Trypanosoma evansi in buffaloes in Indonesia, estimated using various diagnostic tests. Epidemiology and Infection. 2000;124:163-172. DOI: 10.1017/s0950268899003271
  34. 34. Dávila AMR, Herrera HM, Schlebinger T, Souza SS, Traub-Cseko YM. Using PCR for unraveling the cryptic epizootiology of livestock trypanosomosis in the Pantanal, Brazil. Veterinary Parasitology. 2003;117:1-13. DOI: 10.1016/j.vetpar.2003.08.002
  35. 35. Holland WG, Thanh NG, My LN, Do TT, Goddeeris BM, Vercruysse J. Prevalence of Trypanosoma evansi in water buffaloes in remote areas in northern Vietnam using PCR and serological methods. Tropical Animal Health and Production. 2004;36:45-48. DOI: 10.1023/b:trop.0000009521.13984.17
  36. 36. Singla LD, Aulakh GS, Juyal PD, Singh J. Bovine trypanosomosis in Punjab India. Animal health: A breakpoint in economic development? In: The 11th International Conference of the Association of Institutions for Tropical Veterinary Medicine and 16th Veterinary Association Malaysia Congress, 23–27 August 2004, Petaling Jaya, Malaysia. 2004. pp. 283-285
  37. 37. Hilali M, Abdel-Gawad A, Nassar A, Abdel-Wahab A, Magnus E, Büscher P. Evaluation of the card agglutination test (CATT/T. evansi) for detection of Trypanosoma evansi infection in water buffaloes (Bubalus bubalis) in Egypt. Veterinary Parasitology. 2004;121:45-51. DOI: 10.1016/j.vetpar.2004.02.009
  38. 38. Herrera HM, Dávila AMR, Norek A, Abreu UG, Souza SS, D’Andrea PS, et al. Enzootiology of Trypanosoma evansi in Pantanal, Brazil. Veterinary Parasitology. 2004;125:263-275. DOI: 10.1016/j.vetpar.2004.07.013
  39. 39. Gangurde KC, Keskar DV, Gaikwad RV, Sonawale VB. A case report: Trypanosomiasis in a buffalo of Nashik city. Journal of Bombay Veterinary College. 2006;14:131
  40. 40. Arunachalam K, Anna T, Senthilvel K, Ponnudurai G, Harikrishnan TJ. Trypanosoma evansi infection in a buffalo. North-East Veterinarian. 2008;7:14
  41. 41. Menon DG, Mathew L. Incidence of Trypanosoma evansi in Thrissur town. Veterinary World. 2008;1:275-277
  42. 42. Konnai S, Mekata H, Mingala CN, Abes NS, Gutierrez CA, Herrera JR, et al. Development and application of a quantitative real-time PCR for the diagnosis of surra in water buffaloes. Infection, Genetics and Evolution. 2009;9:449-452. DOI: 10.1016/j.meegid.2009.01.006
  43. 43. Konnai S, Mingala CN, Sato M, Abes NS, Venturina FA, Gutierrez CA, et al. A survey of abortifacient infectious agents in livestock in Luzon, the Philippines, with emphasis on the situation in a cattle herd with abortion problems. Acta Tropica. 2008;105:269-273. DOI: 10.1016/j.actatropica.2007.12.004
  44. 44. Laha R, Sasmal NK. Detection of Trypanosoma evansi infection in clinically ill cattle, buffaloes and horses using various diagnostic tests. Epidemiology and Infection. 2009;137:1583-1585. DOI: 10.1017/S095026880900260X
  45. 45. Laohasinnarong D, Kawazu S, Villacorte E, Leonardo L, Rivera P, Inoue N. Comparison of PCR and loop-mediated isothermal amplification (LAMP) for Trypanosoma evansi detection in water buffaloes of the Philippines. In: 13th Association of Institutions for Tropical Veterinary Medicine Conference, 23–26 August 2010, Bangkok
  46. 46. Shahzad W, Munir R, Khan MS, Ahmad MD, Ijaz M, Ahmad A, et al. Prevalence and molecular diagnosis of Trypanosoma evansi in Nili-Ravi buffalo (Bubalus bubalis) in different districts of Punjab (Pakistan). Tropical Animal Health and Production. 2010;42:1597-1599. DOI: 10.1007/s11250-010-9616-0
  47. 47. Shahzad W, Munir R, Khan MS, Ahmad MUD, Iqbal M. Molecular diagnosis and chemotherapy of Trypanosoma evansi in Nili-Ravi buffaloes at district Okara (Pakistan). Journal of Animal and Plant Sciences. 2012;22:212-216
  48. 48. Kunhipurayil S, Gupta SK, Singh A, Chaudhary SS, Gupta J. Polymerase chain reaction based detection of Trypanosoma evansi in whole blood of domestic animals. In: Advances in Parasitology: A Novel Approach Towards a Disease Free World. Proceedings of the 22nd National Congress on Parasitology. West Bengal, India: University of Kalyani; 2011. pp. 302-304
  49. 49. Rahman WA, Fong S, Chandrawathani P, Nurulaini R, Zaini CM, Premalaatha B. Comparative seroprevalences of bovine trypanosomiasis and anaplasmosis in five states of Malaysia. Tropical Biomedicine. 2012;29:65-70
  50. 50. Sivajothi S, Rayulu VC, Reddy BS. Development of slide enzyme linked immunosorbent assay (SELISA) for detection of Trypanosoma evansi infection in bovines. Journal of Advanced Veterinary Research. 2012;2:15-17
  51. 51. Nguyen QD, Nguyen TT, Pham QP, Nm LE, Nguyen GT, Inoue N. Seroprevalence of Trypanosoma evansi infection in water buffaloes from the mountainous region of North Vietnam and effectiveness of trypanocidal drug treatment. The Journal of Veterinary Medical Science. 2013;75:1267-1269. DOI: 10.1292/jvms.12-0533
  52. 52. Villareal MV, Mingala CN, Rivera WL. Molecular characterization of Trypanosoma evansi isolates from water buffaloes (Bubalus bubalis) in the Philippines. Acta Parasitologica. 2013;58:6-12. DOI: 10.2478/s11686-013-0110-5
  53. 53. Kocher A, Desquesnes M, Kamyingkird K, Yangtara S, Leboucher E, Rodtian P, et al. Evaluation of an indirect-ELISA test for Trypanosoma evansi infection (surra) in buffaloes and its application to a serological survey in Thailand. BioMed Research International. 2015;2015:361037. DOI: 10.1155/2015/361037
  54. 54. Van Chau VN, Le BC, Desquesnes M, Herder S, Phu HLN, Campbell JI, et al. A clinical and epidemiological investigation of the first reported human infection with the zoonotic parasite Trypanosoma evansi in Southeast Asia. Clinical Infectious Diseases. 2016;62:1002-1008. DOI: 10.1093/cid/ciw052
  55. 55. Srikijkasemwat K, Kaewhom P. Prevalence and genetic diversity of Trypanosoma evansi infection causing abortion among cattles and buffaloes in Eastern border area of Thailand-Cambodia. International Journal of Agricultural Technolohu. 2019;15(6):1021-1032
  56. 56. Godfrey DG, Killick-Kendrick R. Trypanosoma evansi of camels in Nigeria: A high incidence demonstrated by the inoculation of blood into rats. Annals of Tropical Medicine and Parasitology. 1962;56:14-19. DOI: 10.1080/00034983.1962.11686084
  57. 57. Pegram RG, Scott JM. The prevalence and diagnosis of Trypanosoma evansi infection in camels in southern Ethiopia. Tropical Animal Health and Production. 1976;8:20-27. DOI: 10.1007/BF02383361
  58. 58. Luckins AG, Boid R, Rae P, Mahmoud MM, El Malik KH, Gray AR. Serodiagnosis of infection with Trypanosoma evansi in camels in the Sudan. Tropical Animal Health and Production. 1979;11:1-12. DOI: 10.1007/BF02237757
  59. 59. Boid R, El-Amin EA, Mahmoud MM, Luckins AG. Trypanosoma evansi infections and antibodies in goats, sheep and camels in the Sudan. Tropical Animal Health and Production. 1981;13:141-146. DOI: 10.1007/BF02237911
  60. 60. Gibson WC, Wilson AJ, Moloo SK. Characterisation of Trypanosoma (Trypanozoon) evansi from camels in Kenya using isoenzyme electrophoresis. Research in Veterinary Science. 1983;34:114-118
  61. 61. Wilson AJ, Schwartz HJ, Dolan R, Olahu WM. A simple classification of different types of trypanosomiasis occurring in four camel herds in selected areas of Kenya. Tropical Medicine and Parasitology. 1983;34:220-224
  62. 62. Hunter AG. Urine odour in a camel suffering from surra (T. evansi infection). Tropical Animal Health and Production. 1986;18:146-148
  63. 63. Boid R. Isoenzyme characterisation of 15 stocks of Trypanosoma evansi isolated from camels in the Sudan. Tropical Medicine and Parasitology. 1988;39:45-50
  64. 64. Dirie MF, Wallbanks KR, Aden AA, Bornstein S, Ibrahim MD. Camel trypanosomiasis and its vectors in Somalia. Veterinary Parasitology. 1989;32:285-291
  65. 65. Rae PF, Thrusfield MV, Higgins A, Aitken CG, Jones TW, Luckins AG. Evaluation of enzyme immunoassays in the diagnosis of camel (Camelus dromedarius) trypanosomiasis: A preliminary investigation. Epidemiology and Infection. 1989;102:297-307
  66. 66. Wernery U, Seifert HS, Billah AM, Ali M. Predisposing factors in enterotoxemias of camels (Camelus dromedarius) caused by Clostridium perfringens type A. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux. 1991;44:147-152
  67. 67. Diall O, Nantulya VM, Luckins AG, Diarra B, Kouyate B. Evaluation of monoand polyclonal antibody-based antigen detection immunoassays for diagnosis of Trypanosoma evansi infection in the dromedary camel. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux. 1992;45:149-153
  68. 68. Otsyula M, Kamar K, Mutugi M, Njogu AR. Preliminary efficacy trial of Cymelarsan, a novel trypanocide, in camels naturally infected with Trypanosoma evansi in Kenya. Acta Tropica. 1992;50:271-273. DOI: 10.1016/0001-706x(92)90084-b
  69. 69. Baumann MP, Zessin KH. Productivity and health of camels (Camelus dromedarius) in Somalia: Associations with trypanosomosis and brucellosis. Tropical Animal Health and Production. 1992;24:145-156. DOI: 10.1007/BF02359606
  70. 70. Diall O, Bocoum Z, Diarra B, Sanogo Y, Coulibaly Z, Waigalo Y. Epidemiology of trypanosomiasis caused by T. evansi in camels in Mali: Results of parasitological and clinical survey. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux. 1993;46:455-461
  71. 71. Olaho-Mukani W, Munyua WK, Mutugi MW, Njogu AR. Comparison of antibody- and antigen-detection enzyme immunoassays for the diagnosis of Trypanosoma evansi infections in camels. Veterinary Parasitology. 1993;45:231-240. DOI: 10.1016/0304-4017(93)90078-2
  72. 72. Pathak KML, Arora JK, Kapoor M. Camel trypanosomosis in Rajasthan, India. Veterinary Parasitology. 1993;49:319-323. DOI: 10.1016/0304-4017(93)90130-f
  73. 73. Pathak KML, Singh Y, Meirvenne NV, Kapoor M. Evaluation of various diagnostic techniques for Trypanosoma evansi infections in naturally infected camels. Veterinary Parasitology. 1997;69:49-54. DOI: 10.1016/s0304-4017(96)01091-6
  74. 74. Hussein KS, Gasmir GS. Presence of ketones in the serum of Trypanosoma evansi infected camels (Camelus dromedarius) in the Sudan. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux. 1993;46:578-579
  75. 75. Waithanji EM, Nantulya VM, Mbiuki SM. Use of antigen capture tube enzyme-linked immunosorbent assay for the diagnosis of Trypanosoma evansi infections in dromedary camels (Camelus dromedarius). Revue Scientifique et Technique. 1993;12:665-672. DOI: 10.20506/rst.12.2.709
  76. 76. Jacquiet P, Dia ML, Cheikh D, Thiam A. Camel trypanosomiasis caused by Trypanosoma evansi (Steel, 1885) Balbiani 1888, in Islamic Republic of Mauritania: Results of surveys in the Trarza region. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux. 1994;47:59-62
  77. 77. Nantulya VM. Suratex: A simple latex agglutination antigen test for diagnosis of Trypanosoma evansi infections (surra). Tropical Medicine and Parasitology. 1994;45:9-12
  78. 78. Olaho-Mukani W, Nyang’ao JMN, Ouma JO. Use of suratex for field diagnosis of patent and non-patent Trypanosoma evansi infections in camels. The British Veterinary Journal. 1996;152:109-111. DOI: 10.1016/s0007-1935(96)80091-1
  79. 79. Dia ML, Diop C, Aminetou M, Jacquiet P, Thiam A. Some factors affecting the prevalence of Trypanosoma evansi in camels in Mauritania. Veterinary Parasitology. 1997;72:111-120. DOI: 10.1016/s0304-4017(97)00054-x
  80. 80. Singh Y, Pathak KML, Verma KC, Harsh D, Kapoor M. Prevalence and diagnosis of Trypanosoma evansi infection in camels in Rajasthan. Journal of Veterinary Parasitology. 1997;11:133-136
  81. 81. Singh N, Pathak KML, Kumar R. A comparative evaluation of parasitological, serological and DNA amplification methods for diagnosis of natural Trypanosoma evansi infection in camels. Veterinary Parasitology. 2004;126:365-373. DOI: 10.1016/j.vetpar.2004.08.013
  82. 82. Omer OH, Magzoub M, Haroun EM, Mahmoudand OM, Abdelhamid YM. Diagnosis of Trypanosoma evansi in Saudi Arabian camels (Camelus dromedarius) by the passive haemagglutination test and Ag-ELISA. Journal of Veterinary Medicine Series B. 1998;45:627-633. DOI: 10.1111/j.1439-0450.1998.tb00836.x
  83. 83. Abo-Shehada MN, Anshassi H, Mustafa G, Amr Z. Prevalence of surra among camels and horses in Jordan. Preventive Veterinary Medicine. 1999;38:289-293. DOI: 10.1016/s0167-5877(98)00138-x
  84. 84. Al-Rawashdeh O, Sharif LA, Al-Qudah K, Al-Ani F. Trypanosoma evansi infection in camels in Jordan. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux. 1999;52:233-237
  85. 85. Molina JM, Ruiz A, Juste MC, Corbera JA, Amador R, Gutiérrez C. Seroprevalence of Trypanosoma evansi in dromedaries (Camelus dromedarius) from the Canary Islands (Spain) using an antibody Ab-ELISA. Preventive Veterinary Medicine. 2000;47:53-59. DOI: 10.1016/s0167-5877(00)00157-4
  86. 86. Gutierrez C, Corbera JA, Juste MC, Doreste F, Morales I. An outbreak of abortions and high neonatal mortality associated with Trypanosoma evansi infection in dromedary camels in the Canary Islands. Veterinary Parasitology. 2006;130:163-168. DOI: 10.1196/annals.1373.044
  87. 87. Gutierrez C, Juste MC, Corbera JA, Magnus E, Verloo D, Montoya JA. Camel trypanosomosis in the Canary Islands: Assessment of seroprevalence and infection rates using the card agglutination test (CATT/T. evansi) and parasite detection tests. Veterinary Parasitology. 2000;90:155-159. DOI: 10.1016/s0304-4017(00)00225-9
  88. 88. Audu PA, Abifarin OM. A survey of blood parasites of some domestic animals at Zango Abattoir Tudun-Wada, Kaduna. Sokoto Journal of Veterinary Sciences. 2001;3:28-33
  89. 89. Zeleke M, Bekele T. Effect of season on the productivity of camels (Camelus dromedarius) and the prevalence of their major parasites in eastern Ethiopia. Tropical Animal Health and Production. 2001;33:321-329. DOI: 10.1023/a:1010540120119
  90. 90. Atarhouch T, Rami M, Bendahman MN, Dakkak A. Camel trypanosomosis in Morocco 1: Results of a first epidemiological survey. Veterinary Parasitology. 2003;111:277-286. DOI: 10.1016/s0304-4017(02)00382-5
  91. 91. Ngaira JM, Bett B, Karanja SM, Njagi ENM. Evaluation of antigen and antibody rapid detection tests for Trypanosoma evansi infection in camels in Kenya. Veterinary Parasitology. 2003;114:131-141. DOI: 10.1016/s0304-4017(03)00112-2
  92. 92. Delafosse A, Doutoum AA. Prevalence of Trypanosoma evansi infection and associated risk factors in camels in eastern Chad. Veterinary Parasitology. 2004;119:155-164. DOI: 10.1016/j.vetpar.2003.11.010
  93. 93. Njirua ZK, Constantine CC, Ndung’u JM, Robertson I, Okaye S, Thompson RC, et al. Detection of Trypanosoma evansi in camels using PCR and CATT/T. evansi tests in Kenya. Veterinary Parasitology. 2004;124:187-199. DOI: 10.1016/j.vetpar.2004.06.029
  94. 94. Shah SR, Phulan MS, Memon MA, Rind R, Bhatti WM. Trypanosomes infection in camels. Pakistan Veterinary Journal. 2004;24:209-210
  95. 95. Mottelib AA, Hosein HI, Mourad I, El-Sherif AM, Abo-Zeid ASA. Comparative evaluation of various diagnostic techniques for Trypanosoma evansi in naturally infected camels. In: Animals and Environment, Proceedings of the XIIth International Society for Animal Hygiene Congress on Animal Hygiene, Warsaw, Poland. Vol. 2. 2005. pp. 505-507
  96. 96. Hasan MU, Muhammad G, Gutierrez C, Iqbal Z, Shakoor A, Jabbar A. Prevalence of Trypanosoma evansi infection in equines and camels in the Punjab region, Pakistan. Annals of the New York Academy of Sciences. 2006;1081:322-324. DOI: 10.1196/annals.1373.043
  97. 97. Abdel-Rady A. Epidemiological studies (parasitological, serological and molecular techniques) of Trypanosoma evansi infection in camels (Camelus dromedarius) in Egypt. Veterinary World. 2008;1:325-328
  98. 98. Saleh MA, Al-Salahy MB, Sanousi SA. Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi. Veterinary Parasitology. 2009;162:192-199. DOI: 10.1016/j.vetpar.2009.03.035
  99. 99. Derakhshanfar A, Mozaffari AA, Zadeh AM. An outbreak of trypanosomiasis (surra) in camels in the southern Fars Province of Iran: Clinical, hematological and pathological findings. Research Journal of Parasitology. 2010;5:23-26
  100. 100. Tamarit A, Gutierrez C, Arroyo R, Jimenez V, Zagalá G, Bosch I, et al. Trypanosoma evansi infection in mainland Spain. Veterinary Parasitology. 2010;167:74-76. DOI: 10.1016/j.vetpar.2009.09.050
  101. 101. Bhutto B, Gadahi JA, Shah G, Dewani P, Arijo AG. Field investigation on the prevalence of trypanosomiasis in camels in relation to sex, age, breed and herd size. Pakistan Veterinary Journal. 2010;30:175-177
  102. 102. Ali NOM, Croof HI, Abdalla HS. Molecular diagnosis of Trypanosoma evansi infection in Camelus dromedarius from eastern and western regions of the Sudan. Emirates Journal of Food and Agriculture. 2011;23:320-329
  103. 103. Amer S, Ryu O, Tada C, Fukuda Y, Inoue N, Nakai Y. Molecular identification and phylogenetic analysis of Trypanosoma evansi from dromedary camels (Camelus dromedarius) in Egypt, a pilot study. Acta Tropica. 2011;117:39-46. DOI: 10.1016/j.actatropica.2010.09.010
  104. 104. Amoudi MA, Al-Yousif M, Al-Shawa Y. Morphological forms of Trypanosoma evansi from blood of Arabian camel (Camelus dromedarius) in the Riyadh Metropolitan areas. Journal of the Egyptian Society of Parasitology. 2011;41:29-34
  105. 105. Al-Taqi MM. Characterization of Trypanosoma (Trypanozoon) evansi from dromedary camels in Kuwait by isoenzyme electrophoresis. Veterinary Parasitology. 2011;32(11):835-841. DOI: 10.1016/0304-4017(89)90124-6
  106. 106. Kassa T, Eguale T, Chaka H. Prevalence of camel trypanosomosis and its vectors in Fentale District, South East Shoa Zone, Ethiopia. Veterinarski Arhiv. 2011;81:611-621
  107. 107. Nadeem A, Aslam A, Chaudhary ZI, Ashraf K, Saeed K, Ahmad N, et al. Indirect fluorescent antibody technique based prevalence of surra in equines. Pakistan Veterinary Journal. 2011;31:169-170
  108. 108. Ogbaje CI, Lawal IA, Ajanusi OJ. Infectivity and pathogenicity of Sokoto (Northern Nigeria) isolate of Trypanosoma evansi in west African dwarf goats. International Journal of Animal and Veterinary Advances. 2011;3:117
  109. 109. Khosravi A, Hakimi Parizi M, Bamorovat M, Borhani Zarandi M, Mohammadi MA. Prevalence of Trypanosoma evansi in camels using molecular and parasitological methods in the southeast of Iran, 2011. Journal of Parasitic Diseases. 2015;39:422-425. DOI: 10.1007/s12639-013-0355-9
  110. 110. Sazmand A, Eigner B, Mirzaei M, Hekmatimoghaddam SH, Harl J, Duscher GG, et al. Molecular identification of hemoprotozoan parasites in camels (Camelus dromedarius) of Iran. Iranian Journal of Parasitology. 2016;11:568-573
  111. 111. Sazmand A, Rasooli A, Nouri M, Hamidinejat H, Hekmatimoghaddam H. Serobiochemical alterations in subclinically affected dromedary camels with Trypanosoma evansi in Iran. Pakistan Veterinary Journal. 2011;31:223-226
  112. 112. Salim B, Bakheit MA, Kamau J, Nakamura I, Sugimoto C. Molecular epidemiology of camel trypanosomiasis based on ITS1 rDNA and RoTat 1.2 VSG gene in the Sudan. Parasites & Vectors. 2011;4:31. DOI: 10.1186/1756-3305-4-31
  113. 113. Ashour AA, Abou El-Naga TR, Barghash SM, Salama MS. Trypanosoma evansi: Detection of Trypanosoma evansi DNA in naturally and experimentally infected animals using TBR1 & TBR2 primers. Experimental Parasitology. 2013;134:109-114. DOI: 10.1016/j.exppara.2013.02.003
  114. 114. Bennoune O, Adili N, Amri K, Bennecib L, Ayachi A. Trypanosomiasis of camels (Camelus dromedarius) in Algeria: First report. Veterinary Research Forum. 2013;4:273-275
  115. 115. Elhaig MM, Youssef AI, El-Gayar AK. Molecular and parasitological detection of Trypanosoma evansi in Camels in Ismailia, Egypt. Veterinary Parasitology. 2013;198:214-218. DOI: 10.1016/j.vetpar.2013.08.003
  116. 116. Pourjafar M, Badiei K, Sharifiyazdi H, Chalmeh A, Naghib M, Babazadeh M, et al. Genetic characterization and phylogenetic analysis of Trypanosoma evansi in Iranian dromedary camels. Parasitology Research. 2013;112:899-903. DOI: 10.1007/s00436-012-3121-5
  117. 117. Ahmadi-Hamedani M, Ghazvinian K, Darvishi MM. Hematological and serum biochemical aspects associated with a camel (Camelus dromedarius) naturally infected by Trypanosoma evansi with severe parasitemia in Semnan, Iran. Asian Pacific Journal of Tropical Biomedicine. 2014;4:743-745
  118. 118. Babeker EA, Elrasoul YMH. Incidence and treatment of camel trypanosomosis (Guffar) in west Omdurman in Sudan. Journal of Veterinary Advances. 2014;4:582-593
  119. 119. Aregawi WG, Kassa TS, Tarekegn KD, Brehanu WT, Haile ST, Kiflewahid FZ. Parasitological and serological study of camel trypanosomosis (surra) and associated risk factors in Gabi Rasu Zone, Afar, Ethiopia. Journal of Veterinary Medicine and Animal Health. 2015;7:234-240
  120. 120. Birhanu H, Fikru R, Said M, Kidane W, Gebrehiwot T, Hagos A, et al. Epidemiology of Trypanosoma evansi and Trypanosoma vivax in domestic animals from selected districts of Tigray and Afar regions, northern Ethiopia. Parasites & Vectors. 2015;8:212. DOI: 10.1186/s13071-015-0818-1
  121. 121. Tehseen S, Jahan N, Qamar MF, Desquesnes M, Shahzad MI, Deborggraeve S, et al. Parasitological, serological and molecular survey of Trypanosoma evansi infection in dromedary camels from Cholistan Desert, Pakistan. Parasites & Vectors. 2015;8:413-415. DOI: 10.1186/s13071-015-1002-3
  122. 122. Fikru R, Andualem Y, Getachew T, Menten J, Hasker E, Merga B, et al. Trypanosome infection in dromedary camels in eastern Ethiopia: Prevalence, relative performance of diagnostic tools and host related risk factors. Veterinary Parasitology. 2015;211:175-181. DOI: 10.1016/j.vetpar.2015.04.008
  123. 123. El-Bahr SM, El-Deeb WM. Trypanosoma evansi in naturally infected dromedary camels: Lipid profile, oxidative stress parameters, acute phase proteins and proinflammatory cytokines. Parasitology. 2016;143:518-522. DOI: 10.1017/S0031182016000123
  124. 124. El-Wathig M, Faye B, Thevenon S, Ravel S, Bossard G. Epidemiological surveys of camel trypanosomosis in Al-jouf, Saudi Arabia based on PCR and ELISA. Emirates Journal of Food and Agriculture. 2016;28:212-216
  125. 125. Narnaware SD, Ghorui SK, Kumar S, Patil NV. Vertical transmission of Trypanosoma evansi in dromedary camels and studies on fetal pathology, diagnosis and treatment. Acta Parasitologica. 2016;61:329-336. DOI: 10.1515/ap-2016-0043
  126. 126. Olani A, Habtamu Y, Wegayehu T, Anberber M. Prevalence of camel trypanosomosis (surra) and associated risk factors in Borena zone, southern Ethiopia. Parasitology Research. 2016;115:1141-1147. DOI: 10.1007/s00436-015-4845-9
  127. 127. Elmaleck BSA. Effect of seasonal variations on distribution of parasites in camels at Assiut locality. Journal of Veterinary Science & Technology. 2016;7:279
  128. 128. Salah AA. Epidemiological studies on camel trypanosomosis (surra) and its control and economic impact in Somaliland [PhD thesis]. Western Australia: Murdoch University; 2016
  129. 129. Durrani AZ, Bashir Z, Rasheed I, Sarwar NA. Epidemiological study of common diseases and their risk factors in camels in South Punjab, Pakistan. Microbial Pathogenesis. 2017;108:6-12. DOI: 10.1016/j.micpath.2017.04.011
  130. 130. Mossaad E, Salim B, Suganuma K, Musinguzi P, Hassan MA, Elamin EA, et al. Trypanosoma vivax is the second leading cause of camel trypanosomosis in Sudan after Trypanosoma evansi. Parasites & Vectors. 2017;10:176. DOI: 10.1186/s13071-017-2117-5
  131. 131. Sobhy HM, Barghash SM, Behour TS, Razin EA. Seasonal fluctuation of trypanosomiasis in camels in North-West Egypt and effect of age, sex, location, health status and vector abundance on the prevalence. Beni-Suef University Journal of Basic and Applied Sciences. 2017;6(1):64-68
  132. 132. Elhaig MM, Sallam NH. Molecular survey and characterization of Trypanosoma evansi in naturally infected camels with suspicion of a Trypanozoon infection in horses by molecular detection in Egypt. Microbial Pathogenesis. 2018;123:201-205. DOI: 10.1016/j.micpath.2018.07.017
  133. 133. Khalafalla RE, Al Mawly JH. Biometrical and morphological description of Trypanosoma evansi among one-humped camel (Camelus dromedaries) in Oman. Journal of the Saudi Society of Agricultural Sciences. 2020;19:326-331
  134. 134. Osman MAM, Gissmalla AF, Juma Y, Fangama MIM, Abdalla MA, Suliman SE. Prevalence and risk factors of Trypanosoma evansi infection and classification of vectors in camels in Tamboul localty, Sudan. International Journal of Current Microbiology and Applied Sciences. 2020;9(8):291-298
  135. 135. Ereqat S, Nasereddin A, Al-Jawabreh A, Al-Jawabreh H, Al-Laham N, Abdeen Z. Prevalence of Trypanosoma evansi in livestock in Palestine. Parasites & Vectors. 2020;13(1):21. DOI: 10.1186/s13071-020-3894-9
  136. 136. Al-Kharusi A, Elshafie EI, Baqir S, Faraz A, Al-Ansari A, Burger P, et al. Detection of Trypanosoma infection in dromedary camels by using different diagnostic techiques in Northern Oman. Animals. 2022;12:1348. DOI: 10.3390/ani12111348
  137. 137. Selim A, Alafari HA, Attia K, et al. Prevalence and animal level risk factors associated with Trypanosoma evansi infection in dromedary camels. Scientific Reports. 2022;12:8933. DOI: 10.1038/s41598-022-12817-x
  138. 138. Anonymous. Surra in the Federated Malay States. The Journal of Comparative Pathology and Therapeutics. 1909;22:185-192
  139. 139. Iyer AR. Surra in bovines; some uncommon symptoms. The Indian Veterinary Journal. 1948;24:298
  140. 140. Boid R, Mleche WC. Isoenzyme analysis of stocks of trypanosomes isolated from cattle in Indonesia. Research in Veterinary Science. 1985;39:388-389
  141. 141. Payne RC, Sukanto IP, Partoutomo S, Sitepu P, Jones TW. Effect of suramin treatment on the productivity of feedlot cattle in a Trypanosoma evansi endemic area of Indonesia. Tropical Animal Health and Production. 1994;26:35-36. DOI: 10.1007/BF02241130
  142. 142. Payne RC, Ward DE, Usman M, Rusli A, Djauhari D, Husein A. Prevalence of bovine haemoparasites in Aceh Province of northern Sumatra: Implications for imported cattle. Preventive Veterinary Medicine. 1988;6:275-283
  143. 143. Franke CR, Greiner M, Mehlitz D. Investigations on naturally occurring Trypanosoma evansi infections in horses, cattle, dogs and capybaras (Hydrochaeris hydrochaeris) in Pantanal de Poconé (Mato Grosso, Brazil). Acta Tropica. 1994;58:159-169. DOI: 10.1016/0001-706x(94)90055-8
  144. 144. Wuyts N, Chokesajjawatee N, Sarataphan N, Panyim S. PCR amplification of crude blood on microscope slides in the diagnosis of Trypanosoma evansi infection in dairy cattle. Annales de la Société Belge de Médecine Tropicale. 1995;75:229-237
  145. 145. Tuntasuvan D, Sarataphan N, Nishikawa H. Cerebral trypanosomiasis in native cattle. Veterinary Parasitology. 1997;73:357-363. DOI: 10.1016/s0304-4017(97)00128-3
  146. 146. Kashiwazaki Y, Kanitpun R, Suteeraparp P, Boonchit S. A preliminary comparative study of a dipstick colloidal dye immunoassay and two antigen-detection ELISAs for diagnosis of Trypanosoma evansi infection in cattle. Veterinary Research Communications. 2000;24:533-544. DOI: 0.1023/a:1006439902072
  147. 147. Kashiwazaki Y, Pholpark M, Polsar C, Pholpark S. Haemoparasite infections in newly introduced dairy cattle in Loei Province, Thailand: Trypanosoma evansi antigen levels by ELISA referring to abortion. Veterinary Parasitology. 1998;80:99-109. DOI: 10.1016/s0304-4017(98)00197-6
  148. 148. Pholpark S, Pholpark M, Polsar C, Charoenchai A, Paengpassa Y, Kashiwazaki Y. Influence of Trypanosoma evansi infection on milk yield of dairy cattle in northeast Thailand. Preventive Veterinary Medicine. 1999;42:39-44. DOI: 10.1016/s0167-5877(99)00056-2
  149. 149. Suteeraparp P, Pholpark S, Pholpark M, Charoenchai A, Chompoochan T, Yamane I, et al. Seroprevalence of antibodies to Neospora caninum and associated abortion in dairy cattle from central Thailand. Veterinary Parasitology. 1999;86:49-57. DOI: 10.1016/s0304-4017(99)00130-2
  150. 150. Gonzales JL, Chacon E, Miranda M, Loza A, Siles LM. Bovine trypanosomosis in the Bolivian Pantanal. Veterinary Parasitology. 2007;146:9-16. DOI: 10.1016/j.vetpar.2007.02.010
  151. 151. Gonzales JL, Jones TW, Picozzi K, Cuellar HR. Evaluation of a polymerase chain reaction assay for the diagnosis of bovine trypanosomiasis and epidemiological surveillance in Bolivia. Kinetoplastid Biology and Disease. 2003;2:8. DOI: 10.1186/1475-9292-2-8
  152. 152. Muraleedharan K, Ziauddin KS, Hussain PM, Puttabyatappa B, Seshadri SJ. Clinical signs of haemoparasitic infections of cattle of milk-shed areas on extensive cross breeding with exotic blood. Veterinary Communication. 2007;2:30-32
  153. 153. Desquesnes M, Kamyingkird K, Kengradomkij C, Pruvot M, Sarataphan N, Jittapalapong S. Standardisation of an ELISA for Trypanosoma evansi and its application to dairy cattle in Thailand. In: Proceedings of the 15th Congress of the Federation of Asian Veterinary Associations – OIE Joint Symposium on Emerging Diseases, Bangkok, Thailand. 2008. pp. 269-270
  154. 154. Jittapalapong S, Pinyopanuwat N, Inpankaew T, Sangvaranond A, Phasuk C, Chimnoi W, et al. Prevalence of Trypanosoma evansi infections causing abortions among dairy cows in the central part of Thailand. Kasetsart Journal (Natural Science). 2009;43:53-57
  155. 155. Mekata H, Konnai S, Witola WH, Inoue N, Onuma M, Ohashi K. Molecular detection of trypanosomes in cattle in South America and genetic diversity of Trypanosoma evansi based on expression-site-associated gene 6. Infection, Genetics and Evolution. 2009;9:1301-1305. DOI: 10.1016/j.meegid.2009.07.009
  156. 156. Baticados WN, Fernandez CP, Baticados AM. Molecular detection of Trypanosoma evansi in cattle from Quirino Province, Philippines. Veterinarski Arhiv. 2011;81:635-646
  157. 157. Nair AS, Ravindran R, Lakshmanan B, Kumar SS, Tresamol PV, Saseendranath MR, et al. Haemoprotozoa of cattle in northern Kerala, India. Tropical Biomedicine. 2011;28:68-75
  158. 158. Al-Abadi B, Al-Badrani B. Cattle blood analyses for parasitic infestation in Mosul, Iraq. Research Opinions in Animal and Veterinary Sciences. 2012;2:535-543
  159. 159. Rodríguez NF, Tejedor-Junco MT, González-Martín M, Santana del Pino A, Gutiérrez C. Cross-sectional study on prevalence of Trypanosoma evansi infection in domestic ruminants in an endemic area of the Canary Islands (Spain). Preventive Veterinary Medicine. 2012;105:144-148. DOI: 10.1016/j.prevetmed.2012.02.006
  160. 160. Shyma KP, Gupta SK, Singh A, Chaudhri SS. Efficiency of monoclonal antibody based latex agglutination test in detecting Trypanosoma evansi under field conditions for improving the productivity in buffaloes. Buffalo Bulletin. 2012;31:163-172
  161. 161. Singh NK, Singh H, Jyoti HM, Rath SS. Prevalence of parasitic infections in cattle of Ludhiana district, Punjab. Journal of Parasitic Diseases. 2012;36:256-259. DOI: 10.1007/s12639-012-0119-y
  162. 162. Agrawal V, Das G, Nath S. Incidence of Trypanosoma evansi in cross breed cattle in Indore, Madhya Pradesh. Environment and Ecology. 2013;31:1635-1637
  163. 163. Takeet MI, Fagbemi BO, De Donato M, Yakubu A, Rodulfo HE, Peters SO, et al. Molecular survey of pathogenic trypanosomes in naturally infected Nigerian cattle. Research in Veterinary Science. 2013;94:555-561. DOI: 10.1016/j.rvsc.2012.10.018
  164. 164. Chaudhri SS, Bisla RS, Bhanot V, Singh H. Prevalence of haemoprotozoan infections in pyretic dairy animals of eastern Haryana. Indian Journal of Animal Research. 2013;47:344-347
  165. 165. Shyam KP, Gupta SK, Singh A, Chaudhary SS, Gupta JP. Detection of Trypanosoma evansi in whole blood of domestic animals by DNA amplification method. Indian Journal of Animal Research. 2013;47:456-459
  166. 166. Sharma A, Das Singla L, Tuli A, Kaur P, Bal MS. Detection and assessment of risk factors associated with natural concurrent infection of Trypanosoma evansi and Anaplasma marginale in dairy animals by duplex PCR in eastern Punjab. Tropical Animal Health and Production. 2015;47:251-257. DOI: 10.1007/s11250-014-0710-6
  167. 167. Sharma A, Das Singla L, Tuli A, Kaur P, Batth BK, Javed M, et al. Molecular prevalence of Babesia bigemina and Trypanosoma evansi in dairy animals from Punjab, India, by duplex PCR: A step forward to the detection and management of concurrent latent infections. BioMed Research International. 2013;2013:893862. DOI: 10.1155/2013/893862
  168. 168. Bal MS, Sharma A, Ashuma BBK, Kaur P, Singla LD. Detection and management of latent infection of Trypanosoma evansi in a cattle herd. Indian Journal of Animal Research. 2014;48:31-37
  169. 169. Jesse FFA, Asinamai AB, Abba Y, Muhammad AS, Idris UH, Chung LTE, et al. A clinical case of bovine trypanosomosis in an endemic farm in Malaysia. Journal of Advanced Veterinary and Animal Research. 2016;3:286-291
  170. 170. Murthy CMK, Ananda KJ, Adeppa J. Prevalence of haemoprotozoan infections in bovines of Shimoga region of Karnataka State. Journal of Parasitic Diseases. 2016;40:890-892. DOI: 10.1007/s12639-014-0599-z
  171. 171. Ekawasti F, Wardhana AH, Sawitri DH, Dewi DA, Akbari RA. Serological test for surra cases in Lombok Island. In: Proceedings of International Seminar on Livestock Production and Veterinary Technology 2016. Bogor: Indonesian Center for Animal Science Research and Development (ICARD); 2017. pp. 183-190
  172. 172. Fereig RM, Mohamed SGA, Mahmoud HYA, AbouLaila MA, Guswanto A, Nguyen T, et al. Seroprevalence of Babesia bovis, B. bigemina, Trypanosoma evansi, and Anaplasma marginale antibodies in cattle in southern Egypt. Ticks and Tick-borne Diseases. 2017;8:125-131. DOI: 10.1016/j.ttbdis.2016.10.008
  173. 173. Ode S, Adamu M, Taioe M, Thekisoe O, Adamu S, Saror DI. Molecular occurrence of trypanosomes, erythrocyte and serum sialic acid concentrations of Muturu and Bunaji cattle in Benue State, Nigeria. Veterinary Parasitology. 2017;242:10-13. DOI: 10.1016/j.vetpar.2017.05.018
  174. 174. Jaimes-Dueñez J, Triana-Chávez O, Valencia-Hernández A, Sánchez-Arévalo D, Poche-Ceballos A, Ortíz-Álvarez J, et al. Molecular diagnosis and phylogeographic analysis of Trypanosoma evansi in dogs (Canis lupus familiaris) suggest an epidemiological importance of this species in Colombia. Preventive Veterinary Medicine. 2017;139:82-89. DOI: 10.1016/j.prevetmed.2017.02.007
  175. 175. Ramirez-Iglesias JR, Eleizalde MC, Reyna-Bello A, Mendoza M. Molecular diagnosis of cattle trypanosomes in Venezuela: Evidences of Trypanosoma evansi and Trypanosoma vivax infections. Journal of Parasitic Diseases. 2017;41:450-458. DOI: 10.1007/s12639-016-0826-x
  176. 176. Marsela M, Hayashida K, Terkawi A, Xuan X, Sugimoto C, Yamagishi J. First molecular identification of Trypanosoma evansi from Cattle in Syria, Japan. Journal of Veterinary Research. 2020;68(2):117-127
  177. 177. Setiawan A, Nurcahyo W, Priyowidodo D, Budiati RT, Susanti DSR. Genetic and parasitological identification of Trypanosoma evansi infecting cattle in South Sulawesi, Indonesia. Veterinary World. 2021;14(1):113-119. DOI: 10.14202/vetworld.2021.113-119
  178. 178. Adams ARD, Lionnet FE. An outbreak of surra among the wild deer (Cervus unicolor var) of Mauritius. The Journal of Comparative Pathology and Therapeutics. 1933;46:165-167
  179. 179. Tuntasuvan D, Mimapan S, Sarataphan N, Trongwongsa L, Intraraksa R, Luckins AG. Detection of Trypanosoma evansi in brains of the naturally infected hog deer by streptavidine-biotin immunohistochemistry. Veterinary Parasitology. 2000;87:223-230. DOI: 10.1016/s0304-4017(99)00164-8
  180. 180. Nurulaini R, Jamnah O, Adnan M, Zaini CM, Khadyah S, Rafiah A, et al. Mortality of domesticated java deer attributed to surra. Tropical Biomedicine. 2007;24:67-70
  181. 181. Adrian MS, Sani RA, Hassan L, Wong MT. Outbreaks of trypanosomiasis and the seroprevalence of T. evansi in a deer breeding centre in Perak, Malaysia. Tropical Animal Health and Production. 2010;42:145-150. DOI: 10.1007/s11250-009-9406-8
  182. 182. Thiptara A, Jeenpun A, Suknao K, Konkaew W, Worasing R, Anan S, et al. Epidemiological investigation on outbreaks of cervine trypanosomosis (surra) in rusa deer (Cervus timorensis) in Krabi Province of southern Thailand. In: Agricultural Innovation for Global Value Chain, Proceedings of 54th Kasetsart University Annual Conference, 2–5 February 2016, Kasetsart University, Thailand, Plants, Animals, Veterinary Medicine, Fisheries, Agricultural Extension and Home Economics. Vol. 1. 2016. pp. 586-593
  183. 183. Walley RSJ. Surra in fox-hounds. The Journal of Comparative Pathology and Therapeutics. 1893;6:285-286
  184. 184. Ware F. Surra in a oack of foxhounds. The Journal of Comparative Pathology and Therapeutics. 1928;41:249-254
  185. 185. Fernando SD, Jayasinghe JB. The use of spirotrypan in the treatment of surra in dogs. The Veterinary Record. 1965;77:44-45
  186. 186. Hellebrekers LJ, Slappendel RJ. Trypanosomiasis in a dog imported in The Netherlands. The Veterinary Quarterly. 1982;4:182-186
  187. 187. Rajamanickam C, Wiesenhutter E, Zin FM, Hamid J. The incidence of canine haematozoa in Peninsular Malaysia. Veterinary Parasitology. 1985;17:151-157
  188. 188. Stevens JR, Nunes VLB, Lanham SM, Oshiro ET. Isoenzyme characterization of Trypanosoma evansi isolated from capybaras and dogs in Brazil. Acta Tropica. 1989;46:213-222
  189. 189. Singh B, Kalra IS, Gupta MP, Nauriyal DC. Trypanosoma evansi infection in dogs: Seasonal prevalence and chemotherapy. Veterinary Parasitology. 1993;50:137-141. DOI: 10.1016/0304-4017(93)90014-e
  190. 190. Balakrishnan VS, Alex PC, Babu KMJ, Saseendranath MR. Canine trypanosomiasis. Cheiron. 1994;23:93-96
  191. 191. Silva RAMS, Herrera HM, da Domingos LBS, Ximenes FA, Davila AMR. Pathogenesis of Trypanosoma evansi infection in dogs and horses: Hematological and clinical aspects. Ciencia Rural. 1995;25:233-238
  192. 192. Arora N, Kumar A, Sharma SD. A case of Trypanosoma evansi infection in a Pomeranian dog. Veterinary Practioner. 2003;4:23-24
  193. 193. Herrera HM, Rocha FL, Lisboa CV, Rademaker V, Mourão GM, Ansen AM. Food web connections and the transmission cycles of Trypanosoma cruzi and Trypanosoma evansi (Kinetoplastida, Trypanosomatidae) in the Pantanal Region, Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2011;105:380-387. DOI: 10.1016/j.trstmh.2011.04.008
  194. 194. Krishnamoorthy P. A case of canine trypanosomiasis. Intas Polivet. 2005;6:203
  195. 195. Colpo CB, Monteiro SG, Stainki DR, Colpo ETB, Henriques GB. Natural infection by Trypanosoma evansi in dogs. Ciencia Rural. 2005;35:717
  196. 196. Savani ESMM, Nunes VLB, Galati EAB, Castilho TM, Arau’jo FS, Ilha IMN, Camargo MCGO, D’Auria SRN, Floeter-Winter LM. Occurrence of co-infection by Leishmania (Leishmania) chagasi and Trypanosoma (Trypanozoon) evansi in a dog in the State of Mato Grosso do Sul, Brazil. Memórias do Instituto Oswaldo Cruz. 2005;100:739-741. DOI: 10.1590/s0074-02762005000700011
  197. 197. Varshney JP. Treatment aspects of naturally occurring trypanosomosis in dogs - A clinical study. Intas Polivet. 2005;6:200-222
  198. 198. Franciscato C, Anjos Lopes ST, Teixeira MG, Monteiro SG, Wolkmer P, Garmatz BC, et al. Dog naturally infected by Trypanosoma evansi in Santa Maria RS Brasil. Ciencia Rural. 2007;37:288
  199. 199. Silva AS, Zanette RA, Colpo CB, Santurio JM, Monteiro SG. Clinical signs in dogs naturally infected by Trypanosoma evansi (Kinetoplastida: Trypanosomatidae) in the State of Rio Grande do Sul, Brazil. Clínica Veterinária. 2008;13:66-68
  200. 200. Barameechaithanun E, Suwannasaeng P, Boonbal N, Pattanee S, Hoisang S. Treatment of trypanosomiasis in dog. Journal of Mahanakorn Veterinary Medicine. 2009;4:51-60
  201. 201. Vatsya S, Garg R, Kumar RR, Yadav CL, Banerjee PS. Retrospective study on the incidence of gastrointestinal and blood parasites in dogs at Pantnagar and their public health significance. Journal of Veterinary Public Health. 2010;8:29-32
  202. 202. Aquino LPCT, Machado RZ, Lemos KR, Marques LC, Garcia MV, Borges GP. Antigenic characterization of Trypanosoma evansi using sera from experimentally and naturally infected bovines, equines, dogs, and coatis. Revista Brasileira de Parasitologia Veterinária. 2010;19:112-118
  203. 203. Correa-Salgado A, Pacheco de Araujo FA, Cañón-Franco WA. Natural infection by Trypanosoma evansi in dog, Manizales - Colombia: Case report. Revista Ibero-latinoamericana de Parasitologia. 2010;69:98-100
  204. 204. Howes F, Silva AS, Athayde C, Costa MM, Corrêa MMB, Tavares KCS, et al. A new therapeutic protocol for dogs infected with Trypanosoma evansi. Acta Scientiae Veterinariae. 2011;39:988
  205. 205. Sharma A, Sharma B, Kumar A, Tiwari M, Ramsagar. Incidence of haemoprotozoan infection in canines in and around Mathura. Veterinary Practioner. 2011;12:149-150
  206. 206. Defontis M, Richartz J, Engelmann N, Bauer C, Schwierk VM, Buscher P, et al. Canine Trypanosoma evansi infection introduced into Germany. Veterinary Clinical Pathology. 2012;41(3):369-374. DOI: 10.1111/j.1939-165X.2012.00454.x
  207. 207. Aref M, Yasin SM, Bahear W, Ghulam Z, Hastie L, Dennison T, et al. Canine Trypanosoma evansi infection in Afghanistan. Veterinary Parasitology. 2013;197:638-641. DOI: 10.1016/j.vetpar.2013.07.016
  208. 208. Coelho WMD, Coelho JCA, Teixeira WFP, Coelho NMD, Oliveira GP, Lopes WDZ, et al. Detection of co-infections by Leishmania (L.) chagasi, Trypanosoma evansi, Toxoplasma gondii and Neospora caninum in dogs. Ars Veterinária. 2013;29:169-174
  209. 209. Rashid I, Firyal S, Tariq A, Muhammad G, Saqib M, Zafar MS. Use of Cymelarsan® and manganese chloride for treatment of the canine trypanosomiasis (surra): A research report. Advances in Animal and Veterinary Sciences. 2014;2:104-105
  210. 210. Rjeibi MR, Ben Hamida T, Dalgatova Z, Mahjoub T, Rejeb A, Dridi W, et al. First report of surra (Trypanosoma evansi infection) in a Tunisian dog. Parasite. 2015;22:3. DOI: 10.1051/parasite/2015004
  211. 211. Prasad KL, Kondaiah PM, Rayulu VC, Srilatha C. Prevalence of canine trypanosomiasis in certain areas of Andhra Pradesh. Journal of Parasitic Diseases. 2015;39:238-240. DOI: 10.1007/s12639-013-0326-1
  212. 212. Panigrahi PN, Mahendran K, Jena SC, Behera P, Mahajan S, Arjun K, et al. Trypanosoma evansi infection in a German shepherd dog – apparent successful treatment using serial low dose of diminazene aceturate. Veterinary Parasitology: Regional Studies and Reports. 2015;1–2:70-74. DOI: 10.1016/j.vprsr.2016.03.003
  213. 213. Battistoni MFB, Orcellet V, Peralta JL, Marengo R, Plaza D, Brunini A, et al. First report of Trypanosoma evansi in a canine in Argentina. Veterinary Parasitology: Regional Studies and Reports. 2016;6:1-3. DOI: 10.1016/j.vprsr.2016.10.001
  214. 214. Lavanya KV, Gudewar JG, Pednekar RP, Gatne ML. Epidemiological, clinical, haemato-biochemical and therapeutic evaluation of canine trypanosomosis in Mumbai. The Indian Journal of Animal Sciences. 2016;86:372-375
  215. 215. Reddy BS, Kumari KN, Sivajothi S, Rayulu VC. Haemato-biochemical and thyroxin status in Trypanosoma evansi infected dogs. Journal of Parasitic Diseases. 2016;40:491-495. DOI: 10.1007/s12639-014-0531-6
  216. 216. Recalde ODS, Fraenkel S, Tintel MJ, Arze VP, Centurion NR, Rolon M, et al. First report of the presence of Trypanosoma evansi in dogs from Paraguay applying molecular techniques. Brazilian Journal of Veterinary Medicine. 2021;43:e001920
  217. 217. Perrone TM, Gonzatti MI, Villamizar G, Escalante A, Aso PM. Molecular profiles of Venezuelan isolates of Trypanosoma sp. by random amplified polymorphic DNA method. Veterinary Parasitology. 2009;161:194-200. DOI: 10.1016/j.vetpar.2009.01.034
  218. 218. Kumar R, Kumar S, Khurana SK, Yadav SC. Development of an antibody- ELISA for seroprevalence of Trypanosoma evansi in equids of north and north-western regions of India. Veterinary Parasitology. 2013;196:251-257
  219. 219. Bukhari SSH, Rafiq MA, Ghani U. Prevalence of Trypanosoma evansi (Surra) Infection in Horses and Donkeys in Attock Region of Punjab, Pakistan. Saudi Journal of Biomedical Research. 2019;4(11):402-404
  220. 220. Waheed MA, Qureshi GH, Gondal JI. A report on surra in Gujranwala. Pakistan Veterinary Journal. 2003;23:153-154
  221. 221. Gondal JI, Ahmad H. Zoonotic and infectious diseases: Dealing with disease outbreaks: A report on surra (trypanosomiasis) in Gujranwala, Pakistan. In: Sixth International Colloquium on Working Equids: Learning from Others. Proceedings of an International Colloquium, New Delhi. 2010. pp. 208-213
  222. 222. Alanazi AD, Puschendorf R, Salim B, Alyousif MS, Alanazi IO, Al-Shehri HR. Molecular detection of equine trypanosomiasis in the Riyadh Province of Saudi Arabia. Journal of Veterinary Diagnostic Investigation. 2018:1-4. DOI: 10.1177/1040638718798688
  223. 223. Jana D, Jana M. Report on trypanosomiasis in a black Bengal buck. Intas Polivet. 2005;6:204
  224. 224. Anonymous. North-African Surra. The Journal of Comparative Pathology and Therapeutics. 1906;19:60-62
  225. 225. Monzón CM, Jara A, Nantulya VM. Sensitivity of antigen ELISA test for detecting Trypanosoma evansi antigen in horses in the subtropical area of Argentina. The Journal of Parasitology. 1995;81:806-808
  226. 226. Silva JA, Domiciano TA, Montão DP, Silva Sousa PG, Ramos LL, Argolo Paredes LJ, et al. Reemerging of natural infection by Trypanosoma evansi in horses in Arari Marajó Island Brazil. Ciencia Rural. 2016;46:2170-2176
  227. 227. Tuntasuvan D, Jarabrum W, Viseshakul N, Mohkaew K, Borisutsuwan S, Theeraphan A, et al. Chemotherapy of surra in horses and mules with diminazene aceturate. Veterinary Parasitology. 2003;110:227-233. DOI: 10.1016/s0304-4017(02)00304-7
  228. 228. Herrera HM, Norek A, Freitas TP, Rademaker V, Fernandes O, Jansen AM. Domestic and wild mammals infection by Trypanosoma evansi in a pristine area of the Brazilian Pantanal region. Parasitology Research. 2005;96:121-126. DOI: 10.1007/s00436-005-1334-6
  229. 229. Rodrigues A, Fighera RA, Souza TM, Lucia AS, Soares M, Milano J, et al. Outbreaks of trypanosomiasis in horses by Trypanosoma evansi in the State of Rio Grande do Sul, Brazil: Epidemiological, clinical, hematological, and pathological aspects. Pesquisa Veterinaria Brasileira. 2005;25:239-249
  230. 230. Bharkad GP, Bhikane AU, Raote YV, Markandeya NM, Khan MA. Surra in a Kathiawari mare - a case report. Intas Polivet. 2005;6:205-206
  231. 231. Conrado AC, Lopes STA, Oliveira LSS, Monteiro SG, Vargas DLB, Bueno A. Natural infection by Trypanosoma evansi in horses in the central area of the State of Rio Grande do Sul, Brazil. Ciencia Rural. 2005;35:928-931
  232. 232. Bhardwaj RK, Singh J. Trypanosomiasis in a pregnant mare - A case report. Centaurus. 2007;24:31-33
  233. 233. Chaudhary PS, Varshney JP, Deshmukh VV. Diagnosis and treatment of trypanosomiasis in equines: Report of fifteen cases. Intas Polivet. 2008;9:274-278
  234. 234. Zanette RA, Schafer da Silva A, Machado da Costa M, Monteiro SG, Santurio JM, Anjos Lopes ST. Occurrence of Trypanosoma evansi in equines in Cruz Alta, RS, Brazil. Ciencia Rural. 2008;38:1468-1471
  235. 235. Laha R, Sasmal NK. Endemic status of Trypanosoma evansi infection in a horse stable of eastern region of India - a field investigation. Tropical Animal Health and Production. 2008;40:357-361. DOI: 10.1007/s11250-007-9107-0
  236. 236. Laha R, Sasmal NK. Detection of Trypanosoma evansi infection among parasitologically and immunologically negative animals by polymerase chain reaction. Journal of Protozoology Research. 2010;20:7-11
  237. 237. Mavadiya SV, Raval SK, Mehta SA. Epidemiological aspects of Trypanosoma evansi infection in horses. The Indian Journal of Fiels Veterinarians. 2010;6:51-53
  238. 238. Silva AS, Andrade Neto OAS, Costa MM, Wolkmer P, Mazzantti CM, Santurio JM, et al. Trypanosomosis in equines in southern Brazil. Acta Scientiae Veterinariae. 2010;38:113-120
  239. 239. Berlin D, Nasereddin A, Azmi K, Ereqat S, Abdeen Z, Eyal O, et al. Prevalence of Trypanosoma evansi in horses in Israel evaluated by serology and reverse dot blot. Research in Veterinary Science. 2012;93:1225-1230. DOI: 10.1016/j.rvsc.2012.04.009
  240. 240. Nunes JTS, da Silva AS, de Souza DF, Tonin AA, Lazzarotto C, Miletti LC, et al. Occurrence of Trypanosoma evansi in horses in the State of Minas Gerais, Brazil. Journal of Equine Veterinary Science. 2012;32:205-207
  241. 241. Ehizibolo DO, Kamani J, Ehizibolo PO, Egwu KO, Dogo GI, Salami-Shinaba JO. Prevalence and significance of parasites of horses in some states of northern Nigeria. Journal of Equine Science. 2012;23:1-4. DOI: 10.1294/jes.23.1
  242. 242. Elshafie EI, Sani RA, Hassan L, Sharma R, Bashir A, Abubakar IA. Seroprevalence and risk factors of Trypanosoma evansi infection in horses in Peninsular Malaysia. Research in Veterinary Science. 2013;94:285-289. DOI: 10.1016/j.rvsc.2012.09.004
  243. 243. Sumbria D, Singla LD, Sharma A, Moudgil AD, Bal MS. Equine trypanosomosis in central and western Punjab: Prevalence, haematobiochemical response and associated risk factors. Acta Tropica. 2014;138:44-50. DOI: 10.1016/j.actatropica.2014.06.003
  244. 244. Yadav SC, Kumar R, Manuja A, Goyal L, Gupta AK. Early detection of Trypanosoma evansi infection and monitoring of antibody levels by ELISA following treatment. Journal of Parasitic Diseases. 2014;38:124-127. DOI: 10.1007/s12639-012-0204-2
  245. 245. Parreira DR, Jansen AM, Abreu UGP, Macedo GC, Silva ARS, Mazur C, et al. Health and epidemiological approaches of Trypanosoma evansi and equine infectious anemia virus in naturally infected horses at southern Pantanal. Acta Tropica. 2016;163:98-102. DOI: 10.1016/j.actatropica.2016.08.005
  246. 246. Tehseen S, Jahan N, Desquesnes M, Shahzad MI, Qamar MF. Field investigation of Trypanosoma evansi and comparative analysis of diagnostic tests in horses from Bahawalpur, Pakistan. Turkish Journal of Veterinary and Animal Sciences. 2017;41:288-293
  247. 247. Ndiha MRM, Apsari IAP, Dwinata IM. Prevalensi dan intensitas infeksi Trypanosoma evansi pada kuda di desa kabaru, Kecamatan Rindi, Kabupaten Sumba Timur. Buletin Veteriner Udayana. 2018;10(1):70-75
  248. 248. Zahoor J, Kashif M, Nasir A, Bakksh M, Qamar MF, Sikandar A, et al. Molecular detection and therapeutic study of Trypanosoma brucei evansi from naturally infected horses in Punjab, Pakistan. Polish Journal of Veterinary Sciences. 2022;25(3):429-435. DOI: 10.24425/pjvs.2022.142027
  249. 249. Gill BS, Singh J, Gill JS, Kwatra MS. Trypanosoma evansi infection in pigs in India. The Veterinary Record. 1987;120:92
  250. 250. Holland WG, Thanh NG, Do TT, Sangmaneedet S, Goddeeris B, Vercruysse J. Evaluation of diagnostic tests for Trypanosoma evansi in experimentally infected pigs and subsequent use in field surveys in north Vietnam and Thailand. Tropical Animal Health and Production. 2005;37:457-467. DOI: 10.1007/s11250-005-1217-y
  251. 251. Herrera HM, Abreu UGP, Keuroghlian A, Freitas TP, Jansen AM. The role played by sympatric collared peccary (Tayassu tajacu), white-lipped peccary (Tayassu pecari), and feral pig (Sus scrofa) as maintenance hosts for Trypanosoma evansi and Trypanosoma cruzi in a sylvatic area of Brazil. Parasitology Research. 2008;103:619-624. DOI: 10.1007/s00436-008-1021-5
  252. 252. Rao KM. Surra, a note on its prevalence in equines in East Godavari District during the last five years. The Indian Veterinary Journal. 1947;24:189
  253. 253. Sivajothi S, Rayulu VC, Malakondaiah P, Sreenivasulu D, Reddy BS. Detection of antibodies against Trypanosoma evansi in sheep by indirect ELISA in Rayalaseema region of Andhra Pradesh. Journal of Advanced Veterinary Research. 2014;4:88-92
  254. 254. Jalilzadeh-Amin G, Nozohour Y, Maham M, Malekifard F. First report of surra (Trypanosoma evansi infection) in Iranian sheep. Bulgarian Journal of Veterinary Medicine. 2020:1-6
  255. 255. Ayala SC, Wells EA. Disappearance of Trypanosoma evansi from a vampire bat colony in western Colombia. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1974;68:76. DOI: 10.1016/0035-9203(74)90263-6
  256. 256. Silva-Iturriza A, Nassar JM, García-Rawlins AM, Rosales R, Mijares A. Trypanosoma evansi kDNA minicircle found in the Venezuelan nectar feeding bat Leptonycteris curasoae (Glossophaginae), supports the hypothesis of multiple origins of that parasite in South America. Parasitology International. 2013;62:95-99. DOI: 10.1016/j.parint.2012.10.003
  257. 257. Muhammad G, Saqib M, Sajid MS, Naureen A. Trypanosoma evansi infections in Himalayan black bears (Selenarctos thibetanus). Journal of Zoo and Wildlife Medicine. 2007;38:97-100. DOI: 10.1638/06-024.1
  258. 258. Shahid M, Janjua S, Abbas F, Burbach JS. PCR-based detection of Trypanosoma evansi infection in semi-captive Asiatic black bears (Ursus thibetanus). Pakistan Veterinary Journal. 2013;33:442-445
  259. 259. Morales GA, Wells EA, Angel D. The capybara (Hydrochoerus hydrochaeris) as a reservoir host for Trypanosoma evansi. Journal of Wildlife Diseases. 1976;12:572-574
  260. 260. Wells EA, D’Alessandro A, Morales GA, Angel D. Mammalian wildlife diseases as hazards to man and livestock in an area of the Llanos Orientales of Colombia. Journal of Wildlife Diseases. 1981;17:153-162. DOI: 10.7589/0090-3558-17.1.153
  261. 261. Santa Cruz A, Comolli J, Ortiz J, González J, González A. Morphometric data of Trypanosoma evansi in capybaras (Hydrochaeris hydrochaeris) from Chaco Argentina. Rev. Vet. 2013;24:60-62
  262. 262. Eberhardt AT, Monje LD, Zurvera DA, Beldomenico PM. Detection of Trypanosoma evansi infection in wild capybaras from Argentina using smear microscopy and real-time PCR assays. Veterinary Parasitology. 2014;202:226-233. DOI: 10.1016/j.vetpar.2014.02.043
  263. 263. Da Silva AS, Krawczak FS, Soares JF, Klauck V, Pazinato R, Marcili A, et al. Seroprevalence of Trypanosoma evansi infection in capybaras (Hydrochoerus hydrochaeris) from a nonendemic area in Brazil. Journal of Veterinary Diagnostic Investigation. 2016;28:171-174. DOI: 10.1177/1040638715626487
  264. 264. Herrera EA, Castro Y. Trypanosoma evansi (Kinetoplastida: Trypanosomatidae) in capybaras (Hydrochoerus hydrochaeris): Prevalence, effect and sexual selection. Revista de Biología Tropical. 2017;65:229-237. DOI: 10.15517/rbt.v64i3.20110
  265. 265. Magalhães-Matos PC, Cunha-Santos R, Sousa PGS, Sampaio-Júnior FDS, Barros FNL, Mourão FRP, et al. Molecular detection of Trypanosoma evansi (Kinetoplastida: Trypanosomatidae) in procyonids (Carnivora: Procyonidae) in eastern Amazon, Brazil. Ciência Rural. 2016;46:663-668
  266. 266. Alves FM, Olifiers N, Bianchi R, Duarte AC, Cotias PMT, D’Andrea PS, et al. Modulating variables of Trypanosoma cruzi and Trypanosoma evansi transmission in free-ranging coati (Nasua nasua) from the Brazilian Pantanal region. Vector-Borne and Zoonotic Diseases. 2011;11:835-841. DOI: 10.1089/vbz.2010.0096
  267. 267. Olifiers N, Jansen AM, Herrera HM, Bianchi R, D’Andrea PS, Mourão Gde M, et al. Co-infection and wild animal health: Effects of trypanosomatids and gastrointestinal parasites on coatis of the Brazilian Pantanal. PLoS One. 2015;10:e0143997. DOI: 10.1371/journal.pone.0143997
  268. 268. Silveira JAG. Occurrence of hemoparasites and ectoparasites in Mazatinga deer (Mazama gouzoubira Fischer, 1814), deer (Ozotocerus bezoarticus Linnaeus, 1758) and marsh deer (Blastocerus dichotomus Illiger, 1815): Use of parasitological and molecular methods [PhD thesis]. Brazil: Federal University of Minas Gerais (UFMG); 2012
  269. 269. Silveira JAG, Rabelo ÉM, Lacerda AC, Borges PA, Tomás WM, Pellegrin A, et al. Molecular detection and identification of hemoparasites in pampas deer (Ozotoceros bezoarticus Linnaeus, 1758) from the Pantanal Brazil. Ticks and Tick-borne Diseases. 2013;4:341-345. DOI: 10.1016/j.ttbdis.2013.01.008
  270. 270. Sinha BP, Verma SP, Kaushik SK. Successful treatment of acute clinical surra in an elephant. Intas Polivet. 2002;3:131-133
  271. 271. Pintavongs W, Chueplaivej P, Boonyasart B, Kidyhoo S, Pravai W, Rattanakunuprakarn J, et al. Domestic elephant population structure and health status in Thailand. Journal of Kasetsart Veterinarians. 2014;24:16-24
  272. 272. Sinha PK, Mukherjee GS, Das MS, Lahiri RK. Outbreak of Trypanosomiasis evansi amongst tigers and jaguars in the Zoological Garden, Calcutta. Indian Veterinary Journal. 1971;48:306
  273. 273. Herrera HM, Rademaker V, Abreu UGP, D’Andrea PS, Jansen AM. Variables that modulate the spatial distribution of Trypanosoma cruzi and Trypanosoma evansi in the Brazilian Pantanal. Acta Tropica. 2007;102:55-62. DOI: 10.1016/j.actatropica.2007.03.001
  274. 274. Jittapalapong S, Inpankaew T, Sarataphan N, Herbreteau V, Hugot JP, Morand S, et al. Molecular detection of divergent trypanosomes among rodents of Thailand. Infection, Genetics and Evolution. 2008;8:445-449. DOI: 10.1016/j.meegid.2007.08.002
  275. 275. Rademaker V, Herrera HM, Raffel TR, D’Andrea PS, Freitas TP, Abreu UG, et al. What is the role of small rodents in the transmission cycle of Trypanosoma cruzi and Trypanosoma evansi (Kinetoplastida Trypanosomatidae)? A study case in the Brazilian Pantanal. Acta Tropica. 2009;111:102-107. DOI: 10.1016/j.actatropica.2009.02.006
  276. 276. Milocco C, Kamyingkird K, Desquesnes M, Jittapalapong S, Herbreteau V, Chaval Y, et al. Molecular demonstration of Trypanosoma evansi and Trypanosoma lewisi DNA in wild rodents from Cambodia, Lao PDR and Thailand. Transboundary and Emerging Diseases. 2013;60:17-26. DOI: 10.1111/j.1865-1682.2012.01314.x
  277. 277. Pumhom P, Pognon D, Yangtara S, Thaprathorn N, Milocco C, Douangboupha B, et al. Molecular prevalence of Trypanosoma spp. in wild rodents of Southeast Asia: Influence of human settlement habitat. Epidemiology and Infection. 2014;142:1221-1230. DOI: 10.1017/S0950268813002161
  278. 278. Behour TA, Aboelhadid SM, Mousa WM, Amin AS, El-Ashram SA. Molecular diagnosis of acute and chronic infection of Trypanosoma evansi in experimental male and female mice. The Onderstepoort Journal of Veterinary Research. 2019:1-10. DOI: 10.4102/ojvr.v86i1.1638
  279. 279. Arafa MI, Sayed GM, Mahmoud WG. Morpho-metrical observations on Trypanosoma evansi isolated from slaughtered camels in Assiut, Egypt and study their behavior through serial mice passages. Journal of Advances in Parasitology. 2021;8(1):1-8
  280. 280. Dkhil MA, Al-Shaebi EM, Abdel-Gaber R, Alkhudhayri A, Thagfan FA, Al-Quraishy S. Treatment of Trypanosoma evansi-Infected Mice with Eucalyptus camaldulensis Led to a Change in Brain Response and Spleen Immunomodulation. Frontiers in Microbiology. 2022;13:833520. DOI: 10.3389/fmicb.2022.833520
  281. 281. Vellayan S, Mohamad A, Radcliffe RW, Lowenstine LJ, Epstein J, Reid SA, et al. Trypanosomiasis (surra) in the captive Sumatran rhinoceros (Dicerorhinus sumatrensis sumatrensis) in Peninsular Malaysia. Animal health: A breakpoint in economic development? In: The 11th International Conference of the Association of Institutions for Tropical Veterinary Medicine and 16th Veterinary Association Malaysia Congress, 23–27 August 2004, Petaling Jaya, Malaysia. 2004. pp. 187-189
  282. 282. Upadhye SV, Dhoot VM. Trypanosomiasis in a tiger (Panthera tigris). Zoo’s Print Journals. 2000;15:326
  283. 283. Paim FC, Duarte MM, Costa MM, Da Silva AS, Wolkmer P, et al. Cytokines in rats experimentally infected with Trypanosoma evansi. Experimental Parasitology. 2011;128:365-370. DOI: 10.1016/j.exppara.2011.04.007
  284. 284. Wei R, Li X, Wang X, Zhang N, Wang Y, Zhang X, et al. Trypanosoma evansi evades host innate immunity by releasing extracellular vesicles to activate TLR2-AKT signaling pathway. Virulence. 2021;12(1):2017-2036. DOI: 10.1080/21505594.2021.1959495
  285. 285. Pays E, Vanhollebeke B, Vanhamme L, Paturiaux-Hanocq F, Nolan DP, Pérez-Morga D. The trypanolytic factor of human serum. Nature Reviews. Microbiology. 2006;4(6):477-486
  286. 286. Ouma JO, Olaho-Mukani W, Wishitemi BEL, Guya SO. Changes in classical pathway complement activity in dromedary camels experimentally infected with Trypanosoma evansi. Veterinary Immunology and Immunopathology. 1997;57(1-2):135-140. DOI: 10.1016/s0165-2427(96)05758-3
  287. 287. Holzmuller P, Biron DG, Courtois P, Koffi M, Bras-Gonçalves R, Daulouède S, et al. Virulence and pathogenicity patterns of Trypanosoma brucei gambiense field isolates in experimentally infected mouse: Differences in host immune response modulation by secretome and proteomics. Microbes and Infection. 2008;10(1):79-86. DOI: 10.1016/j.micinf.2007.10.008
  288. 288. Stijlemans B, Radwanska M, De Trez C, Magez S. African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses? Frontiers in Immunology. 2017;8:582. DOI: 10.3389/fimmu.2017.00582
  289. 289. Mekata H, Konnai S, Mingala CN, Abes NS, Gutierrez CA, Dargantes AP, et al. Kinetics of regulatory dendritic cells in inflammatory responses during Trypanosoma evansi infection. Parasite Immunology. 2012;34:318-329. DOI: 10.1111/j.1365-3024.2012.01362.x
  290. 290. Sacks DL, Selkirk M, Ogilvie BM, Askonas BA. Intrinsic immunosuppressive activity of different trypanosome strains varies with parasite virulence. Nature (Lond.). 1980;283:476. DOI: 10.1038/283476a0
  291. 291. Antoine-Moussiaux N, Saerens D, Desmecht D. Flow cytometric enumeration of parasitaemia and haematologic changes in Trypanosoma-infected mice. Acta Tropica. 2008;107:139-144. DOI: 10.1016/j.actatropica.2008.05.010
  292. 292. Yamamoto K, Onodera M, Kato K. Involvement of suppressor cells induced with membrane fractions of trypanosomes in immunosuppression of trypanosomiasis. parasite Immunology. 1985;7(2):95-106. DOI: 10.1111/j.1365-3024.1985.tb00062.x
  293. 293. Geiger A, Bossard G, Sereno D, Pissarra J, Lemesre JL, Vincendeau P, et al. Escaping deleterious immune response in their hosts: Lessons from Trypanosomatids. Frontiers in Immunology. 2016;7:21 p. DOI: 10.3389/fimmu.2016.00212
  294. 294. Lun ZR, Lai DH, Wen YZ, Zheng LL, Shen JL, Yang TB, et al. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(29):8835-8842. DOI: 10.1073/pnas.1502599112
  295. 295. Multhoff G, Molls M, Radons J. Chronic Inflammation in Cancer Development. Frontiers in Immunology. 2012;2
  296. 296. Rivera-Correa J, Verdi J, Sherman J, Sternberg JM, Raper J, ó A. Autoimmunity to phosphatidylserine and anemia in African Trypanosome infections. PLoS Neglected Tropical Diseases. 2021;15(9):e0009814. DOI: 10.1371/journal.pntd.0009814
  297. 297. Atawodi SE, Ameh DA, Ibrahim S, Andrew JN, Nzelibe HC, Onyike EO, et al. Indigenous knowledge system for treatment of trypanosomiasis in Kaduna state of Nigeria. Journal of Ethnopharmacology. 2002;79(2):279-282. DOI: 10.1016/s0378-8741(01)00351-8
  298. 298. Asuzu IU, Chineme CN. Effects of Morinda lucida leaf extract on Trypanosoma brucei brucei infection in mice. Journal of Ethnopharmacology. 1990;30(3):307-313. DOI: 10.1016/0378-8741(90)90109-7
  299. 299. Owolabi OA, Makanga B, Thomas EW, Molyneux DH, Oliver RW. Trypanocidal potentials of Africa woody plants. In vitro trials of Khaya grandifoliolium seed extracts. Journal of Ethnopharmacology. 1990;30:227-231. DOI: 10.1016/0378-8741(90)90012-i
  300. 300. Nok AJ, Eseivo KAN, Longet I, Arowosofe S, Onyenekwe PC, Gimba CE, et al. Trypanocidal Potentials of Azadiracta indica: In vivo activity of leaf extract against T. brucei brucei. Journal of Clinical Biochemistry and Nutrition. 1993;15:113-118
  301. 301. Hoet S, Opperdoes FR, Brun R, Quetin-Leclercq J. Natural products active against African trypanosomes: A step towards new drugs. Natural Product Reports. 2004;21(3):353-364. DOI: 10.1039/b311021b
  302. 302. Atawodi SE. Comparative in vitro trypanocidal activities of petroleum ether, chloroform, methanol and aqueous extracts of some Nigeria savannah plants. African Journal of Biotechnology. 2005;4(2):177-182
  303. 303. Aderbauer B, Clausen PH, Kershaw O, Melzig MF. In vitro and in vivo trypanocidal effect of lipophilic extracts of medicinal plants from Mali and Burkina Faso. Journal of Ethnopharmacology. 2008;119(2):225-231. DOI: 10.1016/j.jep.2008.06.024
  304. 304. Fathuddin MM, Inabo HI. In vitro antitrypanosomal potential of chloroform leaf extract of Punica granatum L. on Trypanosoma brucei brucei and Trypanosoma evansi. Microbiological Research. 2017;8(1):6963
  305. 305. Ngure RM, Ongeri B, Karori SM, Wachira W, Maathai RG, Kibugi JK, et al. Anti-trypanosomal effects of Azadiracta indica (neem) extract on Trypanosoma brucei rhodesiense-infected mice. Eastern Journal of Medicine. 2009;14:2-9
  306. 306. Guadani R, Patel J, Prajapati H, Mehta B, Agrawal S. Peristrophe bicalculata—A review. Pharmacognosy Journal. 2010;2:39-45
  307. 307. Nok A, Williams S, Onyenekwe P. Allium sativum-induced death of African trypanosomes. Parasitology Research. 1996;82:634-637. DOI: 10.1007/s004360050177
  308. 308. Atawodi SE, Bulus T, Ibrahim S, Ameh DA, Nok AJ, Mamman M, et al. In vitro trypanocidal effect of methanolic extract of some Nigerian savannah plants. African Journal of Biotechnology. 2003;2(9):317-321
  309. 309. Igoli JO, Gray AI, Clements C, Mouad H. Anti-trypanosomal activity and cytotoxicity of some compounds and extracts from Nigerian medicinal plants. In: Phytochemicals – Bioactivities and Impact on Health. Shanghai, China: In Tech; 2011. pp. 375-388
  310. 310. Antia RE, Olayemi JO, Aina OO, Ajaiyeoba EO. In vitro and in the vivo animal model antitrypanosomal evaluation of ten medicinal plant extracts from southwest Nigeria. African Journal of Biotechnology. 2009;8:1437-1440
  311. 311. Onotu CS, Musa UB, Fajinmi AO, Mazadu MR, Shaida SS. Physiochemical evaluation of ethanolic root extract of Carissa spinarum (Wild Karanda) on Trypanosoma brucei brucei (Federe Strain) infected mice. International Journal of Pharmaceutical Science Invention. 2013;2:18-26
  312. 312. Abedo JA, Jonah OA, Abdullahi RS, Mazadu MR, Idris HY, Muhammed H, et al. Evaluation of trypanosomal activity of Tapinanthus globiferus and Gongronema latifolium on Trypanosoma congolense. Bioscience Research. 2013;10(1):20-28
  313. 313. Abubakar A, Ogbadoyi EO, Okogun JI, Gbodi TI, Ibikunle GF. The identification of putative antitrypanosomal compounds in Tridax procumbens extracts. International Journal of Medicinal and Aromatic Plants. 2012;2(1):185-194
  314. 314. Ritter CS, Baldissera MD, Grando TH, Souza CF, Sagrillo MR, da Silva AP, et al. Achyrocline satureioides essential oil-loaded in nanocapsules reduces cytotoxic damage in liver of rats infected by Trypanosoma evansi. Microbial Pathogenesis. 2017;103:149-154. DOI: 10.1016/j.micpath.2016.12.023
  315. 315. Burkill HM. The useful plants of West Africa. Vol. 1. Kew: Families A-D Royal Botanical Gardens; 1985. p. 417
  316. 316. Nweze NE, Fakae LB, Asuzu IU. Trypanocidal activity of the ethanolic extract of Buchholzia coriacea seed. Nigerian Veterinary Journal. 2009;29(4):1-6
  317. 317. Johnson TO, Omoniwa BP. In vivo trypanocidal activity of ethanolic crude extract and phytochemical fractions of Garcinia kola seeds. Annual Research & Review in Biology. 2014;4(1):212-222
  318. 318. Mann A, Ifarajimi OR, Adewoye AT, Ukam C, Udeme EE, Okorie II, et al. In vivo antitrypanosomal effects of some ethnomedicinal plants from Nupeland of North Central Nigeria. Journal of Traditional and Complementary Medicine. 2011;8(1):15-21. DOI: 10.4314/ajtcam.v8i1.60486
  319. 319. Ogbadoyi EO, Kabiru AY, Omotosho RF. Preliminary studies of the antitrypanosomal activity of Garcinia kola nut extract in mice infected with Trypanosoma brucei brucei. Journal of Medicine and Medical Sciences. 2011;2(1):628-631
  320. 320. Akinpelu DA, Aiyegoro AO, Okoh AI. Studies on the biocidal and cell membrane disruption potentials of stem bark extracts of Afzelia africana (Smith). Biological Research. 2009;42:339-349
  321. 321. Dosso K, N’guessan BB., Bidie AP, Gnangoran BN, Meite S, N’guessan D, Yapo AP, Ehile EE. Antidiarrhoeal activity of an ethanolic extract of the stem bark of Pilistigma reticulatum (Caesalpiniaceae) in rats. African Journal of Traditional, Complementary, and Alternative Medicines. 2012;9:242-249. DOI: 10.4314/ajtcam.v9i2.9
  322. 322. Adeiza AA, Maikai VA, Hassa FB. Phytochemical screening and evaluation of some medicinal plants for their in vitro activities on Trypanosoma evansi. Journal of Medicinal Plants Research. 2009;3(4):315-318
  323. 323. Abiodun OO, Gbotosho GO, Ajaiyeoba EO, Brun R, Oduola AM. Antitrypanosomal activity of some medicinal plants from Nigerian ethnomedicine. Parasitology Research. 2012;110:521-526. DOI: 10.1007/s00436-011-2516-z
  324. 324. Mahmout Y, Mianpeurem T, Dolmazon R, Bouchu D, Fenet B. Amphiphile triterpenoids from Hymenocardia acida Tul. Phytoantimalarial and anti-inflammatory activities. In: Proceedings of 15 ème colloque sur la pharmacopée et la Médecine Traditionnelles Africaines; Libreville, Gabon. 2008
  325. 325. Dkhil MA, Abdel-Gaber R, Khalil MF, Hafiz TA, Mubaraki MA, Al-Shaebi EM, et al. Indigofera oblongifolia as a fight against hepatic injury caused by murine trypanosomiasis. Saudi Journal of Biological Sciences. 2020;27:1390-1395. DOI: 10.1016/j.sjbs.2019.11.038
  326. 326. Dkhil MA, Hafiz TA, Thagfan FA, AL-Shaebi EM, Mubaraki MA, Khalil M, Abdel-Gaber R, Al-Quraishy S. Indigofera oblongifera protects against trypanosomiasis-induced spleen injury. J. Infect. Pub. Health. 2019;12:660-665. DOI: 10.1016/j.jiph.2019.03.005
  327. 327. Tona L, Kambu K, Mesia K, Cimanga K, Aspers S, deBruyne T, et al. Biological screening of traditional preparations from some medicinal plants used as anti-diarrhoeal in Kinshasa, Congo. Phytomed. 1999;6:59-66. DOI: 10.1016/S0944-7113(99)80036-1
  328. 328. Tona L, Mesia K, Ngimbi NP, Chrimwami B, Cimanga K. In vivo antimalarial activity of Cassia occentalis, Morinda morindoides and Phyllanthus niruri. Annals of Tropical Medicine and Parasitology. 2001;95:47-57
  329. 329. Mpiana PT, Tshibanga DST, Shetonde OM, Ngobula KN. In vitro antidrepanocytary activity (antisickle cell anaemia) of some Congolese plants. Phytomed. 2007;14:192-195. DOI: 10.1016/j.phymed.2006.05.008
  330. 330. Dalziel JM. Useful Plants of West Tropical Africa. London, UK: Crown Agent for Overseas Governments; 1937. pp. 462-463
  331. 331. Mohamed RS. Histopathological studies on the curative role of Mentha longifolia in Trypanosoma evansi experimentally infected rats. Journal of Veterinary Medicine and Research. 2021;27(2):177-189
  332. 332. Sofidiya M, Lange C, Sattler L, Beukes D, Afolayan A, Odukoya O, et al. Bioactivity profile of compounds isolated from Hymenocardia acida Tul. leaves. Planta Medica. 2010;76:141
  333. 333. Lockett CT, Grivetti LE. Food related behaviour during drought: A study of rural Fulani, North Eastern Nigeria. International Journal of Food Sciences and Nutrition. 2000;51:91-107
  334. 334. Inabo HI, Fathuddin MM. Antitrypanosomal potentials of ethanolic leaf extracts of Punica granatum against Trypanosoma brucei brucei infection. Bayero Journal of Pure and Applied Sciences. 2011;4(2):35-40
  335. 335. Mann A, Gbate M, Nda-Umar A. Medicinal and Economic Plants of Nupeland. Bida, Niger State, Nigeria: Jube-Evans Books and Publications; 2003. p. 276
  336. 336. Mann A, Egwim EC, Banji B, Umar AN, Gbate M, Ekanem JT. Efficacy of Dissotis rotundifolia on Trypanosoma brucei brucei infection in rats. African Journal of Biochemistry Research. 2009;3(1):5-8
  337. 337. Ibrahim MA, Njoku GC, Sallau AB. In vivo activity of stem bark aqueous extract of Khaya senegalensis against Trypanosoma brucei. African Journal of Biotechnology. 2008;7(5):661-663
  338. 338. Umar IA, Ibrahim MA, Fari NA, Isah S, Balogun DA. In-vitro and -vivo anti-Trypanosoma evansi activities of extracts from different parts of Khaya senegalensis. Journal of Cell and Animal Biology. 2010;4(6):91-95
  339. 339. Edoga CO, Njoku OO, Okeke JJ, Ani CE. Effect of vitamin C treatment on serum protein, albumin, beta-globulin profiles and body weight of Trypanosoma brucei-infected Rattus norvegicus. Animal Research International. 2013;10(1):1685-1688
  340. 340. Oluyomi SA, Melissa LS, Musbau AA, Vicky MA. Anti-trypanosomal and cytotoxic activity of ethanolic extracts of Psidium guajava leaves in Alamar Blue based assays. Veterinarski Arhiv. 2011;81:623-633
  341. 341. Gbile ZO, Adesina SK. Nigerian Flora and its pharmaceutical potentials. Journal of Ethnopharmacology. 1987;19:1-17
  342. 342. Habila N, Agbaji AS, Ladan Z, Bello IA, Haruna E, Dakare MA, et al. Evaluation of in vitro activity of essential oils against Trypanosoma brucei brucei and Trypanosoma evansi. Journal of Parasitology Research. 2010;2010:Article ID 534601. DOI: 10.1155/2010/534601
  343. 343. Kabiru YA, Ogbadoyi EO, Okogun JI, Gbodi TA, Makun HA. Anti-trypanosomal potential of Eucalyptus camaldulensis. British Journal of Pharmacology and Toxicology. 2013;4:25-32
  344. 344. Maikai VA, Maikai BV, Kobo PI. In vitro effect of aqueous extract and fraction IV portion of Ximenia americana stem bark on Trypanosoma congolense DNA. Journal of Parasitology Research. 2014;2014:Article ID 904318. DOI: 10.1155/2014/904318
  345. 345. Peter S, Nandal PN, Prakash SO, Rao J, Kumar SP. In vitro antitrypanosomal evaluation of Picrorhiza kurroa rhibomes. Journal of Pharmaceutics. 2012;3:205-208
  346. 346. Abu AH, Uchendu CN, Ofukwu RA. In vitro anti trypanosomal activity of crude extracts of some Nigerian medicinal plants. Journal of Applied Biosciences. 2009;21:1277-1282
  347. 347. Mann A, Ogbadoyi EO. Evaluation of medicinal plants from nupeland for their in vivo antitrypanosomal activity. African Journal of Biochemistry Research. 2012;3(1):5-8
  348. 348. Shaba P, Pandey NN, Sharma OP, Rao JR, Singh RK. In vitro trypanocidal activity of methanolic extracts of Quercus borealis leaves and Zingiber officinale roots against Trypanosoma evansi. Greener Journal of Agricultural Sciences. 2011;1:41-47
  349. 349. Branquinho RT, Mosqueira VCF, Oliveira-Silva JCV, Simões-Silva MR, Saúde-Guimarães DA, de Lana M. Sesquiterpene lactone in nanostructured parenteral dosage form is efficacious in experimental Chagas disease. Antimicrobial Agents and Chemotherapy. 2014:2067-2075. DOI: 10.1128/AAC.00617-13
  350. 350. Baldissera MD, Sagrillo MR, de Sa MF, Grando TH, Souza CF, de Brum GF, et al. Relationship between DNA damage in liver, heart, spleen and total blood cells and disease pathogenesis of infected rats by Trypanosoma evansi. Experimental Parasitology. 2016;161:12-19. DOI: 10.1016/j.exppara.2015.12.008
  351. 351. Rani R, Kumar S, Dilbaghi N, Kumar R. Nanotechnology enabled the enhancement of antitrypanosomal activity of piperine against Trypanosoma evansi. Experimental Parasitology. 2020;219:108018. DOI: 10.1016/j.exppara.2020.108018
  352. 352. Quijia Quezada C, Azevedo CS, Charneau S, Santana JM, Chorilli M, Carneiro MB, et al. Advances in nanocarriers as drug delivery systems in Chagas disease. International Journal of Nanomedicine. 2019;14:6407-6424. DOI: 10.2147/IJN.S206109
  353. 353. Kannan S, Harel Y, Levy E, Dolitzky A, Sagiv AE, Aryal S, et al. Nano-Leish-IL: A novel iron oxide-based nanocomposite drug platform for effective treatment of cutaneous leishmaniasis. Journal of Controlled Release. 2021;335:203-215. DOI: 10.1016/j.jconrel.2021.05.019
  354. 354. de Oliveira VEC, Carneiro ZA, De Albuquerque S, Marchetti JM. Development and evaluation of a nanoemulsion containing ursolic acid: A promising trypanocidal agent: Nanoemulsion with ursolic acid against T. cruzi. AAPS PharmSciTech. 2017;18:2551-2560. DOI: 10.1208/s12249-017-0736-y
  355. 355. Baiocco P, Ilari A, Ceci P, Orsini S, Gramiccia M, Di Muccio T, et al. Inhibitory effect of silver nanoparticles on trypanothione reductase activity and Leishmania infantum proliferation. ACS Medicinal Chemistry Letters. 2011;2(3):230-233. DOI: 10.1021/ml1002629
  356. 356. Khan AU, Khan AU, Li B, Mahnashi MH, Alyami BA, Alqahtani YS, et al. Biosynthesis of silver capped magnesium oxide nanocomposite using Olea cuspidata leaf extract and their photocatalytic, antioxidant and antibacterial activity. Photodiagnosis and Photodynamic Therapy. 2021;33:102153. DOI: 10.1016/j.pdpdt.2020.102153
  357. 357. Grünfelder CG, Engstler M, Weise F, Schwarz H, Stierhof YD, Morgan GW, et al. Endocytosis of a glycosylphosphatidylinositol-anchored protein via clathrin-coated vesicles, sorting by default in endosomes, and exocytosis via RAB11-positive carriers. Molecular Biology of the Cell. 2003;14:2029-2040. DOI: 10.1091/mbc.e02-10-0640
  358. 358. Ferreira RTB, Melandre AM, Cabral ML, Branquinho MR, Cardarelli-Leite P. Extraction of Trypanosoma cruzi DNA from food: A contribution to the elucidation of acute Chagas disease outbreaks. Revista da Sociedade Brasileira de Medicina Tropical. 2016;49:190-195. DOI: 10.1590/0037-8682-0414-2015
  359. 359. Hikal WM, Tkachenko KG, Said-Al Ahl HAH, Sany H, Sabra AS, Baeshen RS, et al. Chemical composition and biological significance of thymol as antiparasitic. Open Journal of Ecology. 2021;11(3):240-266
  360. 360. Eger I, Soares MJ. Endocytosis in Trypanosoma cruzi (Euglenozoa: Kinetoplastea) epimastigotes: Visualization of ingested transferrin-gold nanoparticle complexes by confocal laser microscopy. Journal of Microbiological Methods. 2012;91(1):101-105. DOI: 10.1016/j.mimet.2012.07.013
  361. 361. Adeyemi OS, Molefe NI, Awakan OJ, Nwonuma CO, Alejolowo OO, Olaolu T, et al. Metal nanoparticles restrict the growth of protozoan parasites. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(3):S86-S94. DOI: 10.1080/21691401.2018.1489267
  362. 362. Adeyemi OS, Whiteley CG. Interaction of nanoparticles with arginine kinase from Trypanosoma brucei: Kinetic and mechanistic evaluation. International Journal of Biological Macromolecules. 2013;62:450-456. DOI: 10.1016/j.ijbiomac.2013.09.008
  363. 363. Tomiotto-Pellissier F, Miranda-Sapla MM, Machado LF, Bortoleti B, Sahd CS, Chagas AF, et al. Nanotechnology as a potential therapeutic alternative for schistosomiasis. Acta Tropica. 2017;174:64-71. DOI: 10.1016/j.actatropica.2017.06.025
  364. 364. Vermelho AB, Da Silva CV, Ricci Junior E, Dos Santos EP, Supuran CT. Nanoemulsions of sulfonamide carbonic anhydrase inhibitors strongly inhibit the growth of Trypanosoma cruzi. Journal of Enzyme Inhibition and Medicinal Chemistry. 2018;33:139-146. DOI: 10.1080/14756366.2017.1405264
  365. 365. Hardman R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives. 2006;114:165-172
  366. 366. Vieira CS, Almeida DB, Thomaz AA, Menna-Barreto RFS, Santos-Mallet JR, Cesar CL, et al. Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz. 2011;106(2):158-165. DOI: 10.1590/s0074-02762011000200007

Written By

Mohamed Dkhil, Saeed El-Ashram and Rewaida Abdel-Gaber

Submitted: 09 April 2023 Reviewed: 04 September 2023 Published: 30 November 2023